首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
(2R,4S)‐2‐(3‐Methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxynaphtho[1,2‐b]azepine, C19H17NOS, (I), crystallizes with a single enantiomer in each crystal, whereas its geometrical isomer (2RS,4SR)‐2‐(5‐methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐naphtho[1,2‐b]azepine, (II), and (2RS,4SR)‐2‐(5‐bromothiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxynaphtho[1,2‐b]azepine, C18H14BrNOS, (III), both crystallize as racemic mixtures. A combination of one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds links the molecules of (I) into a three‐dimensional framework; the molecules of (II) are linked into a C(4)C(4)[R22(7)] chain of rings by a combination of C—H...N and C—H...O hydrogen bonds; and in (III), where Z′ = 2, a combination of four C—H...π(arene) hydrogen bonds and two C—H...π(thienyl) hydrogen bonds links the molecules into complex sheets. Comparisons are made with the assembly patterns in some aryl‐substituted 1,4‐epoxynaphtho[1,2‐b]azepines.  相似文献   

2.
4‐Hydroxy‐2‐vinyl‐2,3,4,5‐tetrahydro‐1‐benzazepine, C12H15NO, (I), and its 7‐fluoro and 7‐chloro analogues, namely 7‐fluoro‐4‐hydroxy‐2‐vinyl‐2,3,4,5‐tetrahydro‐1‐benzazepine, C12H14FNO, (II), and 7‐chloro‐4‐hydroxy‐2‐vinyl‐2,3,4,5‐tetrahydro‐1‐benzazepine, C12H14ClNO, (III), are isomorphous, but with variations in the unit‐cell dimensions which preclude in compound (III) one of the weaker intermolecular interactions found in compounds (I) and (II). Thus the compounds are not strictly isostructural in terms of the structurally significant intermolecular interactions, although the corresponding atomic coordinates are very similar. The azepine rings adopt chair conformations. The molecules are linked by a combination of N—H...O and O—H...N hydrogen bonds into chains of edge‐fused R33(10) rings, which in compounds (I) and (II) are further linked into sheets by a single C—H...π(arene) hydrogen bond. The significance of this study lies in its observation of isomorphism in compounds (I)–(III), and its observation of a sufficient variation in one of the cell dimensions effectively to alter the range of significant hydrogen bonds present in the crystal structures.  相似文献   

3.
(2SR,4RS)‐7‐Fluoro‐2‐exo‐(2‐furyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H12FNO2, (I), crystallizes with Z′ = 2 in the space group P21/c. A combination of three C—H...O hydrogen bonds and one C—H...N hydrogen bond links the molecules into a complex chain of rings, and pairs of such chains are linked into a tube‐like structure by two C—H...π(arene) hydrogen bonds. There are no hydrogen bonds in the structure of racemic (2SR,4RS)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐fluoro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H11BrFNOS, (II), while the molecules of (2S,4R)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H14BrF3NO2S, (III), are linked into sheets by a combination of two C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The significance of this study lies in its observation of the wide variation in the patterns of supramolecular aggregation, consequent upon modest changes in the peripheral substituents.  相似文献   

4.
In (2SR,4RS)‐7‐chloro‐2‐exo‐(4‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13Cl2NO, (I), the molecules are linked by a combination of C—H...O and C—H...N hydrogen bonds into a chain of edge‐fused R33(12) rings. The isomeric compound (2S,4R)‐7‐chloro‐2‐exo‐(2‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (II), crystallizes as a single 2S,4R enantiomer and the molecules are linked into a three‐dimensional framework structure by two C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The molecules of (2S,4R)‐7‐chloro‐2‐exo‐(1‐naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C20H16ClNO, (III), are also linked into a three‐dimensional framework structure, here by one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds. The significance of this study lies in its observation of the variations in molecular configuration and conformation, and in the variation in the patterns of supramolecular aggregation, consequent upon modest changes in the peripheral substituents.  相似文献   

5.
A concise, efficient and versatile route from simple starting materials to tricyclic tetrahydro‐1‐benzazepines carrying [a]‐fused heterocyclic units is reported. Thus, the easily accessible methyl 2‐[(2‐allyl‐4‐chlorophenyl)amino]acetate, (I), was converted, via (2RS,4SR)‐7‐chloro‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1‐benzo[b]azepine‐2‐carboxylate, (II), to the key intermediate methyl (2RS,4SR)‐7‐chloro‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (III). Chloroacetylation of (III) provided the two regioisomers methyl (2RS,4SR)‐7‐chloro‐1‐(2‐chloroacetyl)‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (IVa), and methyl (2RS,4SR)‐7‐chloro‐4‐(2‐chloroacetoxy)‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, C14H15Cl2NO4, (IVb), as the major and minor products, respectively, and further reaction of (IVa) with aminoethanol gave the tricyclic target compound (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐3‐(2‐hydroxyethyl)‐2,3,4a,5,6,7‐hexahydrobenzo[f]pyrazino[1,2‐a]azepine‐1,4‐dione, C15H17ClN2O4, (V). Reaction of ester (III) with hydrazine hydrate gave the corresponding carbohydrazide (VI), which, with trimethoxymethane, gave a second tricyclic target product, (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐4a,5,6,7‐tetrahydrobenzo[f][1,2,4]triazino[4,5‐a]azepin‐4(3H)‐one, C12H12ClN3O2, (VII). Full spectroscopic characterization (IR, 1H and 13C NMR, and mass spectrometry) is reported for each of compounds (I)–(III), (IVa), (IVb) and (V)–(VII), along with the molecular and supramolecular structures of (IVb), (V) and (VII). In each of (IVb), (V) and (VII), the azepine ring adopts a chair conformation and the six‐membered heterocyclic rings in (V) and (VII) adopt approximate boat forms. The molecules in (IVb), (V) and (VII) are linked, in each case, into complex hydrogen‐bonded sheets, but these sheets all contain a different range of hydrogen‐bond types: N—H…O, C—H…O, C—H…N and C—H…π(arene) in (IVb), multiple C—H…O hydrogen bonds in (V), and N—H…N, O—H…O, C—H…N, C—H…O and C—H…π(arene) in (VII).  相似文献   

6.
In the structure of (6R*,11R*)‐5‐acetyl‐11‐ethyl‐6,11‐dihydro‐5H‐dibenzo[b,e]azepine‐6‐carboxylic acid, C19H19NO3, (I), the molecules are linked into sheets by a combination of O—H...O and C—H...O hydrogen bonds; in the structure of the monomethyl analogue (6RS,11SR)‐5‐acetyl‐11‐ethyl‐2‐methyl‐6,11‐dihydro‐5H‐dibenzo[b,e]azepine‐6‐carboxylic acid, C20H21NO3, (II), the molecules are linked into simple C(7) chains by O—H...O hydrogen bonds; and in the structure of the dimethyl analogue (6RS,11SR)‐5‐acetyl‐11‐ethyl‐1,3‐dimethyl‐6,11‐dihydro‐5H‐dibenzo[b,e]azepine‐6‐carboxylic acid, C21H23NO3, (III), a combination of O—H...O, C—H...O and C—H...π(arene) hydrogen bonds links the molecules into a three‐dimensional framework structure. None of these structures exhibits the R22(8) dimer motif characteristic of simple carboxylic acids.  相似文献   

7.
(2SR,4RS)‐2‐exo‐Phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H15NO, (I), (2SR,4RS)‐2‐exo‐(4‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (II), and (2SR,4RS)‐2‐exo‐(3‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C17H17NO, (III), all crystallize with Z′ = 2, in the space groups Cc, P21/n and P21/c, respectively. In each of (II) and (III), the conformations of the two independent molecules are significantly different. The molecules in (I) are linked by C—H...π(arene) hydrogen bonds to form two independent chains, each containing only one type of molecule. The molecules in (II) are linked into sheets by a combination of C—H...O, C—H...(N,O) and C—H...π(arene) hydrogen bonds, all of which link pairs of molecules related by inversion, while in (III), the molecules are linked into sheets by a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds. There are no direction‐specific intermolecular interactions of any kind in the structure of (2SR,4RS)‐7‐bromo‐2‐exo‐phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14BrNO, (IV), but in the structure of (2SR,4RS)‐2‐exo‐(4‐bromophenyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13BrClNO, (V), a combination of one C—H...N hydrogen bond and one C—H...O hydrogen bond links the molecules into sheets of alternating centrosymmetric R22(14) and R66(22) rings. Comparisons are made with the structures of a number of related compounds.  相似文献   

8.
(2S*,4R*)‐2‐exo‐(1‐Naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C20H17NO, (I), crystallizes with Z′ = 2 in the space group P21; the two independent molecules have the same absolute configuration, although this configuration is indeterminate. The molecules of each type are linked by a combination of C—H...O and C—H...π(arene) hydrogen bonds to form two independent sheets, each containing only one type of molecule. (2SR,4RS)‐7‐Methyl‐2‐exo‐(1‐naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C21H19NO, (II), crystallizes as a true racemate in the space group P21/c, and a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds links the molecules into sheets, each containing equal numbers of the two enantiomorphs. (2S*,4R*)‐2‐exo‐(1‐Naphthyl)‐7‐trifluoromethyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C21H16F3NO2, (III), crystallizes as a single enantiomorph, as for (I), but now with Z′ = 1 in the space group P212121; again, the absolute configuration is indeterminate. A single C—H...π(arene) hydrogen bond links the molecules of (III) into simple chains. (2S,4R)‐8‐Chloro‐9‐methyl‐2‐exo‐(1‐naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C21H18ClNO, (IV), crystallizes as a single enantiomorph of well defined configuration, in the space group P212121, where two independent C—H...π(arene) hydrogen bonds link the molecules into a single three‐dimensional framework structure.  相似文献   

9.
In (2RS,4SR)‐7‐chloro‐2‐exo‐(2‐chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H12Cl2FNO, (I), molecules are linked into chains by a single C—H...π(arene) hydrogen bond. (2RS,4SR)‐2‐exo‐(2‐Chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13ClFNO, (II), is isomorphous with compound (I) but not strictly isostructural with it, as the hydrogen‐bonded chains in (II) are linked into sheets by an aromatic π–π stacking interaction. The molecules of (2RS,4SR)‐7‐methyl‐2‐exo‐(4‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H19NO, (III), are linked into sheets by a combination of C—H...N and C—H...π(arene) hydrogen bonds. (2S,4R)‐2‐exo‐(2‐Chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (IV), crystallizes as a single enantiomer and the molecules are linked into a three‐dimensional framework structure by a combination of one C—H...O hydrogen bond and three C—H...π(arene) hydrogen bonds.  相似文献   

10.
The molecules of (2RS,4SR)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H11BrClNOS, (I), are linked into cyclic centrosymmetric dimers by C—H...π(thienyl) hydrogen bonds. Each such dimer makes rather short Br...Br contacts with two other dimers. In (2RS,4SR)‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H15NOS, (II), a combination of C—H...O and C—H...π(thienyl) hydrogen bonds links the molecules into chains of rings. A more complex chain of rings is formed in (2RS,4SR)‐7‐chloro‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H14ClNOS, (III), built from a combination of two independent C—H...O hydrogen bonds, one C—H...π(arene) hydrogen bond and one C—H...π(thienyl) hydrogen bond.  相似文献   

11.
The structures are reported of nine closely related tetrahydro‐1,4‐epoxy‐1‐benzazepines carrying pendant heterocyclic substituents, namely: 2‐exo‐(5‐nitrofuran‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C14H12N2O4, (I), 7‐fluoro‐2‐exo‐(1‐methyl‐1H‐pyrrol‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H15FN2O, (II), 7‐fluoro‐2‐exo‐(5‐methylfuran‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14FNO2, (III), 7‐fluoro‐2‐exo‐(3‐methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14FNOS, (IV), 7‐fluoro‐2‐exo‐(5‐methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14FNOS, (V), 7‐chloro‐2‐exo‐(5‐methylfuran‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14ClNO2, (VI), 2‐exo‐(5‐methylfuran‐2‐yl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C16H14F3NO3, (VII), 2‐exo‐(3‐methylthiophen‐2‐yl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C16H14F3NO2S, (VIII), and 2‐exo‐(5‐nitrofuran‐2‐yl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H11F3N2O5, (IX). All nine compounds crystallize in centrosymmetric space groups as racemic mixtures with configuration (2RS,4SR). There are no direction‐specific interactions between the molecules in (V). The molecules in (III), (IV), (VI) and (VII) are linked into simple chains, by means of a single C—H...O hydrogen bond in each of (III), (VI) and (VII), and by means of a single C—H...π(arene) hydrogen bond in (IV), while the molecules in (VIII) are linked into a chain of rings. In each of (I) and (II), a combination of one C—H...O hydrogen bond and one C—H...π(arene) hydrogen bond links the molecules into sheets, albeit of completely different construction in the two compounds. In (IX), the sheet structure is built from a combination of four independent C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. Comparisons are made with some related compounds.  相似文献   

12.
(2SR,4RS)‐7‐Chloro‐2‐exo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H16ClNO, (I), crystallizes as a racemic twin in the space group P21 and the molecules are linked into a chain of edge‐fused R33(9) rings by a combination of C—H...O and C—H...N hydrogen bonds. The diastereoisomer (2RS,4RS)‐7‐chloro‐2‐endo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (II), also crystallizes as a racemic twin, but in the space group P212121, and a two‐centre C—H...N hydrogen bond and a three‐centre C—H...(O,N) hydrogen bond combine to link the molecules into a complex chain of rings. In (2R,4R)‐7‐fluoro‐2‐endo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H16FNO, (III), which is not isomorphous with (II), the molecules are linked by a single C—H...O hydrogen bond into simple chains, but the molecular arrangements in (II) and (III) are nonetheless very similar. The significance of this study lies in its observation of the variations in molecular configuration and conformation, and in the variation in the supramolecular aggregation, consequent upon modest changes in the peripheral substituents.  相似文献   

13.
In the crystal structure of (R)‐N,N‐diisopropyl‐3‐(2‐hydroxy‐5‐methyl­phenyl)‐3‐phenyl­propyl­aminium (2R,3R)‐hydrogen tartrate, C22H32NO+·C4H5O6, the hydrogen tartrate anions are linked by O—H⋯O hydrogen bonds to form helical chains built from (9) rings. These chains are linked by the tolterodine molecules via N—H⋯O and O—H⋯O hydrogen bonds to form separate sheets parallel to the (101) plane.  相似文献   

14.
In the title compounds, namely 3‐acetylanilinium bromide, C8H10NO+·Br, (I), 3‐acetylanilinium nitrate, C8H10NO+·NO3, (II), and 3‐acetylanilinium dihydrogen phosphate, C8H10NO+·H2PO4, (III), each asymmetric unit contains a discrete cation, with a protonated amino group, and an anion. In the crystal structure of (I), the ions are connected via N—H...Br and N—H...O hydrogen bonds into a chain of spiro‐fused R22(14) and R24(8) rings. In compound (II), the non‐H atoms of the cation all lie on a mirror plane in the space group Pnma, while the nitrate ion lies across a mirror plane. The crystal structures of compounds (II) and (III) are characterized by hydrogen‐bonded networks in two and three dimensions, respectively. The ions in (II) are connected via N—H...O hydrogen bonds, with three characteristic graph‐set motifs, viz.C22(6), R21(4) and R46(14). The ions in (III) are connected via N—H...O and O—H...O hydrogen bonds, with five characteristic graph‐set motifs, viz.D, C(4), C12(4), R33(10) and R44(12). The significance of this study lies in its illustration of the differences between the supramolecular aggregations in the bromide, nitrate and dihydrogen phosphate salts of a small organic molecule. The different geometry of the counter‐ions and their different potential for hydrogen‐bond formation result in markedly different hydrogen‐bonding arrangements.  相似文献   

15.
In the title compounds, C7H8NO2+·Br, (I), and C7H8NO2+·I, (II), the asymmetric unit contains a discrete 3‐carboxyanilinium cation, with a protonated amine group, and a halide anion. The compounds are not isostructural, and the crystal structures of (I) and (II) are characterized by different two‐dimensional hydrogen‐bonded networks. The ions in (I) are connected into ladder‐like ribbons via N—H...Br hydrogen bonds, while classic cyclic O—H...O hydrogen bonds between adjacent carboxylic acid functions link adjacent ribbons to give three characteristic graph‐set motifs, viz. C21(4), R42(8) and R22(8). The ions in (II) are connected via N—H...I, N—H...O and O—H...I hydrogen bonds, also with three characteristic graph‐set motifs, viz. C(7), C21(4) and R42(18), but an O—H...O interaction is not present.  相似文献   

16.
In the title compound, 4‐iodoanilinium 2‐carboxy‐6‐nitrobenzoate, C6H7IN+·C8H4NO6, the anions are linked by an O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.614 (3) Å and O—H...O = 171°] into C(7) chains, and these chains are linked by two two‐centre N—H...O hydrogen bonds [H...O = 1.86 and 1.92 Å, N...O = 2.700 (3) and 2.786 (3) Å, and N—H...O = 153 and 158°] and one three‐centre N—H...(O)2 hydrogen bond [H...O = 2.02 and 2.41 Å, N...O = 2.896 (3) and 2.789 (3) Å, N—H...O = 162 and 105°, and O...H...O = 92°], thus forming sheets con­taining R(6), R(8), R(13) and R(18) rings.  相似文献   

17.
The morpholinium (tetrahydro‐2H‐1,4‐oxazin‐4‐ium) cation has been used as a counter‐ion in both inorganic and organic salt formation and particularly in metal complex stabilization. To examine the influence of interactive substituent groups in the aromatic rings of benzoic acids upon secondary structure generation, the anhydrous salts of morpholine with salicylic acid, C4H10NO+·C7H5O3, (I), 3,5‐dinitrosalicylic acid, C4H10NO+·C7H3N2O7, (II), 3,5‐dinitrobenzoic acid, C4H10NO+·C7H3N2O6, (III), and 4‐nitroanthranilic acid, C4H10NO+·C7H5N2O4, (IV), have been prepared and their hydrogen‐bonded crystal structures are described. In the crystal structures of (I), (III) and (IV), the cations and anions are linked by moderately strong N—H…Ocarboxyl hydrogen bonds, but the secondary structure propagation differs among the three, viz. one‐dimensional chains extending along [010] in (I), a discrete cyclic heterotetramer in (III), and in (IV), a heterotetramer with amine N—H…O hydrogen‐bond extensions along b, giving a two‐layered ribbon structure. With the heterotetramers in both (III) and (IV), the ion pairs are linked though inversion‐related N—H…Ocarboxylate hydrogen bonds, giving cyclic R44(12) motifs. With (II), in which the anion is a phenolate rather than a carboxylate, the stronger assocation is through a symmetric lateral three‐centre cyclic R12(6) N—H…(O,O′) hydrogen‐bonding linkage involving the phenolate and nitro O‐atom acceptors of the anion, with extension through a weaker O—H…Ocarboxyl hydrogen bond. This results in a one‐dimensional chain structure extending along [100]. In the structures of two of the salts [i.e. (II) and (IV)], there are also π–π ring interactions, with ring‐centroid separations of 3.5516 (9) and 3.7700 (9) Å in (II), and 3.7340 (9) Å in (IV).  相似文献   

18.
The molecules of racemic 3‐benzoylmethyl‐3‐hydroxyindolin‐2‐one, C16H13NO3, (I), are linked by a combination of N—H...O and O—H...O hydrogen bonds into a chain of centrosymmetric edge‐fused R22(10) and R44(12) rings. Five monosubstituted analogues of (I), namely racemic 3‐hydroxy‐3‐[(4‐methylbenzoyl)methyl]indolin‐2‐one, C17H15NO3, (II), racemic 3‐[(4‐fluorobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12FNO3, (III), racemic 3‐[(4‐chlorobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12ClNO3, (IV), racemic 3‐[(4‐bromobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12BrNO3, (V), and racemic 3‐hydroxy‐3‐[(4‐nitrobenzoyl)methyl]indolin‐2‐one, C16H12N2O5, (VI), are isomorphous in space group P. In each of compounds (II)–(VI), a combination of N—H...O and O—H...O hydrogen bonds generates a chain of centrosymmetric edge‐fused R22(8) and R22(10) rings, and these chains are linked into sheets by an aromatic π–π stacking interaction. No two of the structures of (II)–(VI) exhibit the same combination of weak hydrogen bonds of C—H...O and C—H...π(arene) types. The molecules of racemic 3‐hydroxy‐3‐(2‐thienylcarbonylmethyl)indolin‐2‐one, C14H11NO3S, (VII), form hydrogen‐bonded chains very similar to those in (II)–(VI), but here the sheet formation depends upon a weak π–π stacking interaction between thienyl rings. Comparisons are drawn between the crystal structures of compounds (I)–(VII) and those of some recently reported analogues having no aromatic group in the side chain.  相似文献   

19.
The title compounds, p‐phenetidinium hydrogen phthalate (or 4‐ethoxyanilinium 2‐carboxybenzoate), C8H12NO+·C8H5O4, (I), and cyclohexylaminium hydrogen phthalate hemihydrate (or cyclohexylaminium 2‐carboxybenzoate hemihydrate), C6H14N+·C8H5O4·0.5H2O, (II), form two‐ and one‐dimensional supramolecular networks, respectively. In (I), the anionic–cationic network consists of R32(6) and R44(16) hydrogen‐bonded rings forming a two‐dimensional sheet along the (001) plane. In (II), O—H...O hydrogen bonds connect the glide‐related anions, generating a supramolecular chain running parallel to [001] to which the cations are linked to form one‐dimensional channels along [001]. The solvent water molecules, which reside on twofold axes, are trapped inside the molecular channels by N—H...O and O—H...O hydrogen bonds.  相似文献   

20.
1,5‐Bis(4‐chlorophenyl)‐3‐(2‐oxo‐1,2‐dihydroquinolin‐3‐yl)pentane‐1,5‐dione, (Ia), and 1,5‐bis(2‐chlorophenyl)‐3‐(2‐oxo‐1,2‐dihydroquinolin‐3‐yl)pentane‐1,5‐dione, (Ib), crystallize as an 84:16 mixture, 0.84C26H19Cl2NO3·0.16C26H19Cl2NO3, in the space group I41/a, where the molecules of the two isomers occupy very similar sites in the unit cell. A combination of one N—H...O hydrogen bond and one C—H...O hydrogen bond links the molecules, regardless of isomeric form, into a single three‐dimensional framework structure. The molecules of (9RS,10RS)‐8,9‐bis(4‐chlorobenzyl)‐10‐(2‐oxo‐1,2‐dihydroquinolin‐3‐yl)‐5,6,9,10‐tetrahydrophenanthridine, C36H22Cl2N2O4, (II), are linked by two hydrogen bonds, one each of the N—H...O and C—H...O types, into a molecular ribbon in which centrosymmetric rings of R22(18) and R44(24) types alternate. The hydrogen‐bonded ribbons enclose channels, which contain highly disordered solvent molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号