首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5′‐dmbpy)2]ClO4·H2O (where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate–5,5′‐dmbpy–KClO4 system. Within the complex cation, the NiII atom is hexacoordinated by two chelating 5,5′‐dmbpy ligands and one chelating ac ligand. The mean Ni—N and Ni—O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen‐bonded centrosymmetric dimers, which are further connected by π–π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single‐ion anisotropy, D, which arises from the reduced local symmetry of the cis‐NiO2N4 chromophore. The fitting of the variable‐temperature magnetic data (2–300 K) gives giso = 2.134 and D/hc = 3.13 cm−1.  相似文献   

2.
The reaction of CoSO4 with 2,4‐oxydibenzoic acid (H2oba) and 4,4′‐bipyridine (bipy) under hydrothermal condition yielded a new one‐dimensional cobalt(II) coordination polymer, {[Co(C14H9O5)2(C10H8N2)(H2O)2]·2H2O}n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, magnetic properties and single‐crystal X‐ray diffraction. The CoII ions are connected by bipy ligands into infinite one‐dimensional chains. The Hoba ligands extend out from the two sides of the one‐dimensional chain. O—H...O hydrogen bonding extends these chains into a two‐dimensional supramolecular architecture.  相似文献   

3.
The reaction of NiCl2, K2C2O4·H2O and 2,2′‐bipyridine (bpy) in water–ethanol solution at 281 K yields light‐purple needles of the new pentahydrate of bis(2,2′‐bipyridine)oxalatonickel(II), [Ni(C2O4)(C10H8N2)2]·5H2O or [Ni(ox)(bpy)2]·5H2O, while at room temperature, deep‐pink prisms of the previously reported tetrahydrate [Ni(ox)(bpy)2]·4H2O [Román, Luque, Guzmán‐Miralles & Beitia (1995), Polyhedron, 14 , 2863–2869] were gathered. The asymmetric unit in the crystal structure of the new pentahydrate incorporates the discrete molecular complex [Ni(ox)(bpy)2] and five solvent water molecules. Within the complex molecule, all three ligands are bonded as chelates. The complex molecules are involved in an extended system of hydrogen bonds with the solvent water molecules. Additionally, π–π interactions also contribute to the stabilization of the extended structure. The dehydration of the pentahydrate starts at 323 K and proceeds in at least two steps as determined by thermal analysis.  相似文献   

4.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

5.
The title compound, {[Ni(C9H4O6)(C14H14N4)]·0.41H2O}n, exhibits a three‐dimensional hydrogen‐bonded supramolecular framework. The NiII cation is six‐coordinated in a distorted triangular prism defined by two N atoms from two 1,3‐bis(imidazol‐l‐ylmethyl)benzene (bix) ligands and four O atoms from two 5‐carboxybenzene‐1,3‐dicarboxylate (HBTC) dianions. The bix molecules and HBTC dianions both act as bidentate ligands, linking the NiII cations to form a one‐dimensional coordination polymer. A two‐dimensional wave‐like net is constructed by O—H...O hydrogen bonds linking adjacent chains. Partially occupied solvent water molecules fill the cavities and link these layers to form a three‐dimensional supramolecular structure via O—H...O hydrogen bonds. The title compound was also characterized by powder X‐ray diffraction and thermogravimetric analysis.  相似文献   

6.
With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal–organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3‐nitrobenzoic acid (HNBA) and 4,4′‐bipyridine (4,4′‐bipy) under hydrothermal conditions produced a two‐dimensional zinc(II) supramolecular architecture, catena‐poly[[bis(3‐nitrobenzoato‐κ2O,O′)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4′‐bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction analysis. The ZnII ions are connected by the 4,4′‐bipy ligands to form a one‐dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π–π stacking interactions, expanding the structure into a threefold interpenetrated two‐dimensional supramolecular architecture. The solid‐state fluorescence analysis indicates a slight blue shift compared with pure 4,4′‐bipyridine and HNBA.  相似文献   

7.
In the title compound, [Ni(C14H8N2O5)(H2O)2]n, the NiII cation is six‐coordinate with a slightly distorted octahedral coordination geometry and the 4‐(isonicotinamido)phthalate ligand links the NiII centres into a three‐dimensional structure with sra topology. The structure is also stabilized by N—H...O hydrogen bonding between the uncoordinated amide groups of the ligand and extensive O—H...O hydrogen bonding between the two coordinated water molecules. The magnetic and thermal stability properties of the title compound are also discussed.  相似文献   

8.
The title ionic compound, [Ni(C12H12N2)(H2O)4]SO4·H2O, is composed of an NiII cation coordinated by a chelating 4,4′‐dimethyl‐2,2′‐bipyridine ligand via its two N atoms [mean Ni—N = 2.056 (2) Å] and by four aqua ligands [mean Ni—O = 2.073 (9) Å], the net charge being balanced by an external sulfate anion. The whole structure is stabilized by a solvent water molecule. Even though the individual constituents are rather featureless, they generate an extremely complex supramolecular structure consisting of a central hydrogen‐bonded two‐dimensional hydrophilic nucleus made up of complex cations, sulfate anions and coordinated and solvent water molecules, with pendant hydrophobic 4,4′‐dimethyl‐2,2′‐bipyridine ligands which interact laterally with their neighbours viaπ–π interactions. The structure is compared with closely related analogues in the literature.  相似文献   

9.
The title complex, [Cu(C6H4N3)]n, was synthesized by the reaction of cupric nitrate, 1H‐benzotriazole (BTAH) and aqueous ammonia under hydrothermal conditions. The asymmetric unit contains three crystallographically independent CuI cations and two 1H‐benzotriazolate ligands. Two of the CuI cations, one with a linear two‐coordinated geometry and one with a four‐coordinated tetrahedral geometry, are located on sites with crystallographically imposed twofold symmetry. The third CuI cation, with a planar three‐coordinated geometry, is on a general position. Two CuI cations are doubly bridged by two BTA ligands to afford a noncentrosymmetric planar [Cu2(BTA)2] subunit, and two [Cu2(BTA)2] subunits are arranged in an antiparallel manner to form a centrosymmetric [Cu2(BTA)2]2 secondary building unit (SBU). The SBUs are connected in a crosswise manner via the sharing of four‐coordinated CuI cations, Cu—N bonding and bridging by two‐coordinate CuI cations, resulting in a one‐dimensional chain along the c axis. These one‐dimensional chains are further linked by C—H...π and weak van der Waals interactions to form a three‐dimensional supramolecular architecture.  相似文献   

10.
Two new nickel(II) complexes, [Ni(4, 4′‐bpy)(H2O)4]n · n(cpp) · 0.5nH2O ( 1 ) and [Ni(cpp)(4, 4′‐bpy)(H2O)2]n ( 2 ) [4, 4′‐bpy = 4, 4′‐bipyridine, H2cpp = 3‐(4‐carboxyphenyl)propionic acid] were synthesized and characterized by single‐crystal X‐ray diffraction, elemental analysis, IR spectroscopy, and thermal analysis. In complex 1 , NiII ions are bridged by 4, 4′‐bpy into 1D chains, and cpp ligands are not involved in the coordination, whereas in complex 2 , cpp ligands adopt a bis(monodentate) mode and link NiII ions into 2D (4, 4) grids with the help of 4, 4′‐bpy ligands. Triple interpenetration occurs, which results in the formation of a complicated 3D network. The difference in the structures of the two complexes can be attributed to the different reaction temperatures and bases.  相似文献   

11.
The title compound, [MnCl2(C24H20N6)], has been synthesized and characterized based on the multifunctional ligand 2,5‐bis(2,2′‐bipyridyl‐6‐yl)‐3,4‐diazahexa‐2,4‐diene (L). The MnII centre is five‐coordinate with an approximately square‐pyramidal geometry. The L ligand acts as a tridendate chelating ligand. The mononuclear molecules are bridged into a one‐dimensional chain by two C—H...Cl hydrogen bonds. These chains are assembled into a two‐dimensional layer through π–π stacking interactions between adjacent uncoordinated bipyridyl groups. Furthermore, a three‐dimensional supramolecular framework is attained through π–π stacking interactions between adjacent coordinated bipyridyl groups.  相似文献   

12.
The reaction of Cu(NO3)2·3H2O with 2,4′‐oxybis(benzoic acid) and 4,4′‐bipyridine under hydrothermal conditions produced a new mixed‐ligand two‐dimensional copper(II) coordination polymer, namely poly[[(μ‐4,4′‐bipyridine‐κ2N ,N ′)[μ‐2,4′‐oxybis(benzoato)‐κ4O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O}n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two‐dimensional wave‐like network through 4,4′‐bipyridine and 2,4′‐oxybis(benzoate) ligands. The two‐dimensional layers are expanded into a three‐dimensional supramolecular structure through intermolecular O—H…O and C—H…O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.  相似文献   

13.
The title CdII compound, {[Cd2(C13H7NO4)2(H2O)4]·5H2O}n, was synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O and 5‐(pyridin‐4‐yl)isophthalic acid (H2L). The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2− ligands, four coordinated water molecules and five isolated water molecules. One of the CdII cations adopts a six‐coordinate octahedral coordination geometry involving three O atoms from one bidentate chelating and one monodentate carboxylate group of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. The second CdII cation adopts a seven‐coordinate pentagonal–bipyramidal coordination geometry involving four O atoms from two bidentate chelating carboxylate groups of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. Each L2− ligand bridges three CdII cations and, likewise, each CdII cation connects to three L2− ligands, giving rise to a two‐dimensional graphite‐like 63 layer structure. These two‐dimensional layers are further linked by O—H...O hydrogen‐bonding interactions to form a three‐dimensional supramolecular architecture. The photoluminescence properties of the title compound were also investigated.  相似文献   

14.
In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdII atom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′‐thiodipropionate ligands, and two N atoms from two different 4,4′‐(propane‐1,3‐diyl)dipyridine ligands. The CdII centres are bridged through carboxylate O atoms of 3,3′‐thiodipropionate ligands and through N atoms of 4,4′‐(propane‐1,3‐diyl)dipyridine ligands to form two different one‐dimensional chains, which intersect to form a two‐dimensional layer. These two‐dimensional layers are linked by S atoms of 3,3′‐thiodipropionate ligands from adjacent layers to form a three‐dimensional network.  相似文献   

15.
In the title complex, [Ag2Cd(CN)4(C12H12N2)2]·H2O or cis‐[Cd{Ag(CN)2}2(5,5′‐dmbpy)2]·H2O, where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridyl, the asymmetric unit consists of a discrete neutral [Cd{Ag(CN)2}2(5,5′‐dmbpy)2] unit and a solvent water molecule. The CdII cation is coordinated by two bidentate chelate 5,5′‐dmbpy ligands and two monodentate [AgI(CN)2] anions, which are in a cis arrangement around the CdII cation, leading to an octahedral CdN6 geometry. The overall structure is stabilized by a combination of intermolecular hydrogen bonding, and AgI...AgI and π–π interactions, forming a three‐dimensional supramolecular network.  相似文献   

16.
A novel cadmium(II) coordination polymer, poly[[[bis­(4,4′‐bipyridine)cadmium(II)]‐μ3‐4,4′‐dicarboxy­biphenyl‐3,3′‐di­carboxyl­ato] 0.35‐hydrate], {[Cd(C16H8O8)(C10H8N2)2]·0.35H2O}n, was obtained by reaction of Cd(CH3COO)2·3H2O, 4,4′‐bipyridine (4,4′‐bpy) and biphenyl‐3,3′,4,4′‐tetra­car­boxylic acid (H4L) under hydro­thermal conditions. Each CdII atom lies at the centre of a distorted octa­hedron, coordinated by four O atoms from three H2L2− ligands and N atoms from two monodentate 4,4′‐bpy ligands. Each H2L2− ligand coordinates to three CdII atoms through two carboxyl­ate groups, one acting as a bridging bidentate ligand and the other in a chelating bidentate fashion. Two Cd atoms, two H2L2− anions and four 4,4′‐bpy ligands form a ring dimer node, which links into an extended broad zonal one‐dimensional chain along the c axis.  相似文献   

17.
4,4′‐Bipyridine‐1,1′‐diium (H2bipy) acetylenedicarboxylate, C10H12N22+·C4O42−, (1), is a new member of a family of related structures with similar unit‐cell parameters. The structures in this family reported previously [Chen et al. (2012). CrystEngComm, 14 , 6400–6403] are (H2bipy)[Cu(ox)2] (ox is oxalate), (2), (H2bipy)[NaH(ox)2], (3), and (H2bipy)[H2(ox)2], (4). Compound (1) has a one‐dimensional structure, in which H2bipy2+ cations and acetylenedicarboxylate (ADC2−) anions are linked through a typical supramolecular synthon, i.e.R22(7), and form linear `–cation–anion–' ribbons. Through an array of nonclassical C—H...O hydrogen bonds, adjacent ribbons interact to give two‐dimensional sheets. These sheets stack to form a layered structure viaπ–π interactions between the H2bipy2+ cations of neighbouring layers. The supramolecular isostructurality of compounds (1)–(4) is ascribed to the synergistic effect of multiple interactions in these structures. The balanced strong and weak intermolecular interactions stabilizing this structure type include strong charge‐assisted N—H...O hydrogen bonds, C—H...O contacts and π–π interactions.  相似文献   

18.
In the title PbII coordination polymer, [Pb(C16H10O4)(C14H8N4)(C3H7NO)]n, each PbII atom is eight‐coordinated by two chelating N atoms from one pyrazino[2,3‐f][1,10]phenanthroline (L) ligand, one dimethylformamide (DMF) O atom and five carboxylate O atoms from three different 4,4′‐ethylenedibenzoate (eedb) ligands. The eedb dianions bridge neighbouring PbII centres through four typical Pb—O bonds and one longer Pb—O interaction to form a two‐dimensional structure. The C atoms from the L and eedb ligands form C—H...O hydrogen bonds with the O atoms of eedb and DMF ligands, which further stabilize the structure. The title compound is the first PbII coordination polymer incorporating the L ligand.  相似文献   

19.
<!?tlsb=‐0.2pt>Nitrogen‐based polydentate ligands are of interest owing to their flexible complexation to transition metal atoms. For the title compound, [Ni(C15H17N2)2], a transition metal complex formed by the coordination of two identical N,N′‐bidentate mono(imino)pyrrolyl ligands to an NiII centre, an X‐ray crystal diffraction study indicates that the two ligands show an inverted arrangement with respect to one another around the NiII centre, which is located on a crystallographic inversion centre. The planes of the aromatic substituents at the imine N atoms of the ligands show dihedral angles of 85.91 (5)° with respect to the NiN4 plane. The Ni—N bond lengths are in the range 1.9072 (15)–1.9330 (15) Å and the Nimino—Ni—Npyrrole bite angles are 83.18 (6)°. The Ni—Npyrrole bond is substantially shorter than the Ni—Nimino bond. Molecules are linked into an extensive network by means of intermolecular C—H...π(arene) hydrogen bonds in which every molecule acts both as hydrogen‐bond donor and acceptor. The supramolecular assembly takes the form of an infinite two‐dimensional sheet.  相似文献   

20.
A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR, X‐ray photoelectron spectroscopy and single‐crystal X‐ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIII centre is seven‐coordinated by three O atoms and four N atoms. The coordination geometry of each BiIII atom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembled via O—H...O hydrogen bonds, resulting in the formation of a three‐dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid‐to‐centroid distances of 3.461 (4) and 3.641 (4) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号