首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spectral dependence of the optical transmission through close-packed monolayers of silica (a-SiO2) microspheres covered with different amounts of amorphous silicon (a-Si) is studied. The strong dips in the transmission can be understood by the coupling of the incident electromagnetic field into the modes of the combined photonic slab structure consisting of the close-packed lattice of a-SiO2 microspheres and a-Si. The dependence of the transmission minima positions on the a-Si thickness and the angle of incidence agree quite well with model calculations. PACS 78.66.-w; 81.16.Dn; 82.70.Dd; 42.70.Qs  相似文献   

2.
We summarized our recent optical studies on semiconductor nanoparticle (NP) based hybrid nanostructures: isolated CdSe NPs on Au substrates, close-packed CdSe NP monolayers on Au substrates, and close-packed monolayers of mixed CdSe/Au NPs. Luminescence properties of semiconductor-metal hybrid nanostructures were studied by space-resolved optical imaging spectroscopy and time-resolved luminescence spectroscopy. The luminescence spectra and dynamics of isolated and assembled NPs depend on the local environments. We discuss exciton-plasmon interactions in semiconductor-metal hybrid nanostructures.  相似文献   

3.
We studied the growth of Xe on Nb(110) from 33 K to 100 K using a combination of low-energy electron diffraction and an in situ oblique-incidence optical reflectivity difference technique. We found that a hexagonal close-packed Xe film grows after a transition layer of three monoatomic layers thick is formed. The first two monolayers, influenced by both the interaction with the Nb substrate and the Xe–Xe interaction, lack long-range order. The third monolayer forms a bulk-like hexagonal close-packed structure. Subsequently a bulk-phase Xe(111) film grows in step-flow mode from 54 K down to 40 K. At 40 K, we observed a brief crossover to a layer-by-layer mode. At 33 K the growth proceeds in a kinetically limited multilayer or a three-dimensional island mode. PACS 68.35.Fx; 68.35.Ja; 82.20.-w; 61.16.Ch  相似文献   

4.
Luminescent CuInS2 nanocrystals have been synthesized in dodecanethiol using air-stable precursors. The nanocrystals were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The optical properties of the CuInS2 nanocrystals can be controlled by changing the reaction conditions, such as reaction time, temperature, and addition of ligands. It was found that the steady-state photoluminescence spectrum of the close-packed CuInS2 nanocrystals on glass substrate peaked at longer wavelength than that of the colloidal ones and the close-packed nanocrystals possessed a shorter luminescence decay time. This behavior was explained on the basis of Förster resonant energy transfer due to the shorter distance between nanocrystals on substrate.  相似文献   

5.
Scanning tunneling microscopy is used to investigate the structure of sequentially adsorbed coronene/octanethiol monolayers on Au(111). In these experiments, coronene-covered gold surfaces are exposed to octanethiol vapor. The resulting mixed monolayers are covered by close-packed octanethiol domains with clusters of coronene located within octanethiol domain boundaries. For these systems, the positions of coronene on the surface are determined by the kinetics of octanethiol monolayer formation and the local structure of the gold. The initial coverage and order of the coronene-covered surface influence the final structure of the mixed coronene/alkanethiol monolayer: deposition of coronene from the vapor phase, which creates a relatively lower coverage and higher degree of order than solution-based deposition, results in smaller coronene clusters. Statistical analysis of the locations of clusters of coronene shows that depending on the deposition parameters, coronene clusters are repelled in varying degree by upward-going and downward-going steps or are attracted to the top edges of surface step defects. In contrast to clusters, isolated coronene molecules are observed in the middle of close-packed octanethiol domains, but also appear to have an affinity for the edge of downward-going steps. We compare these results to mixed monolayers composed of C70 and octanethiol.  相似文献   

6.
Weigen Yan 《Physica A》2008,387(24):6069-6078
We obtain explicit expressions of the number of close-packed dimers and entropy for three types of lattices (the so-called 8.8.6, 8.8.4, and hexagonal lattices) with cylindrical boundary condition and the entropy of the 8.8.6 lattice with toroidal boundary condition. Our results and the one on 8.8.4 and hexagonal lattices with toroidal boundary condition by Salinas and Nagle [S.R. Salinas, J.F. Nagle, Theory of the phase transition in the layered hydrogen-bonded SnCl2⋅2H2O crystal, Phys. Rev. B 9 (1974) 4920-4931] and Wu [F.Y. Wu, Dimers on two-dimensional lattices, Inter. J. Modern Phys. B 20 (2006) 5357-5371] imply that the 8.8.6 (or 8.8.4) lattices with cylindrical and toroidal boundary conditions have the same entropy whereas the hexagonal lattices have not. Based on these facts we propose the following problem: under which conditions do the lattices with cylindrical and toroidal boundary conditions have the same entropy?  相似文献   

7.
In this work we use nonlinear optical properties of Ga nanoparticles monolayers of different average sizes embedded in dielectric matrices to investigate the liquid-solid phase transitions in these materials. Ga nanoparticles, formed by exploiting the partial wetting of liquid Ga over a SiOx surface are irradiated with fs laser pulses from a Ti:sapphire source. The resulting Second Harmonic (SH) generated in the reflection and transmission directions is measured along the phase transitions by cooling the sample from 320 K down to liquid nitrogen temperature. Hysteresis cycles are observed in the nonlinear transmission, which exhibit a strong amplification from the solid to liquid values as compared to the linear optical results. A simple model for SH generation, based on Mie scattering calculations which includes the effect of surface plasmon resonance provides a fair key for the interpretation of the observed effects.  相似文献   

8.
Results of theoretical studies of the interaction between optical radiation and partially ordered disperse media are reported. In terms of the amplitude-phase screen model consideration is given to the concentration effects of whitening and darkening in random close-packed systems of optically soft particles. The concentration dependence of transmission of close-packed systems of coarse particles is described with the use of a small-angle solution of the stochastic finite-difference transfer equation. The effects of coherent reirradiation occurring in close-packed monolayers of highly refracting particles are analyzed using a quasicrystalline approximation of the theory of multiple wave scattering and the radial particle distribution function obtained from a solution of the Percus-Yevick equation. This approach extended to multilayer systems is used to describe formation of forbidden photon zones in transmission spectra of one- and three-dimensional disperse systems with a high degree of ordering. Results of quantitative calculations are shown to agree well with experimental data. The possibility of using established regularities for optimization of spectral characteristics of selective elements based on spatially ordered disperse systems with different structural organization is discussed. Institute of Molecular and Atomic Physics of the National Academy of Sciences of Belarus, 70, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 5, pp. 721–733, September–October, 1998.  相似文献   

9.
Wang-Li Tao  Yi Mu  Guang-Fu Ji 《哲学杂志》2019,99(8):1025-1040
Motivated by the synthesis of a Janus monolayer, the new PtSSe transition-metal dichalcogenide (TMD) have attracted remarkable attention due to their characteristic properties. In this work, we calculated the electronic structure, optical properties, and the thermal conductivity of the PtSSe monolayers, and performed a detailed comparison with other TMDs (monolayer PtS2 and PtSe2) using first-principles calculations. The calculated band gaps of the PtS2, PtSSe, and PtSe2 monolayers were 1.76, 1.38, and 1.21?eV, respectively, which are in good agreement with experimental data. At the same time, we observed a larger spin-orbit splitting in the electronic structure of PtSSe monolayers. The optical properties were also calculated and a significant red shift was observed from the PtS2 to PtSSe to PtSe2 monolayers. The lattice thermal conductivity of the PtSSe monolayer at room temperature (36.19?W/mK) is significantly lower than that of the PtS2 monolayer (54.25?W/mK) and higher than that of the PtSe2 monolayer (18.07?W/mK). Our results show that the PtSSe monolayer breaks structural symmetry and has the same ability to reduce the thermal conductivity as MoSSe and ZrSSe monolayers due to the shorter group velocity and the lower converged phonon scattering rate. These results may stimulate further studies on the electronic structure, optical properties, and thermal conductivity of the PtSSe monolayer in both experimental synthesis and theoretical efforts.  相似文献   

10.
In this paper, silica-coated Au nanoparticles (Au@SiO2) were prepared by the technique of vortex mixing. Subsequently, these monodisperse Au@SiO2 nanoparticles were functionalized by the silane reagents 3-aminopropyltriethoxysilane (APS) and 3-mercaptopropyltriethoxysilane (MPTS) respectively. Then, these NH2-terminated and SO32−-terminated Au@SiO2 nanoparticles were respectively assembled onto the substrates, which have been patterned with different self-assembly monolayers (SAMs), to form close-packed two-dimensional Au@SiO2 nanoparticle arrays by electrostatic interactions. The morphologies and the optical properties of Au@SiO2 nanoparticles with different silica-shell thicknesses were characterized by TEM and UV-vis. The compositions and zeta potentials of the functionalized Au@SiO2 nanoparticles were examined by X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS). The morphologies of the patterns formed on different templates were characterized by atomic force microscopy (AFM).  相似文献   

11.
We report Raman scattering from (GaP)n/(InP)n (n = 1, 1.7, 2) short‐period superlattice (SPS) structures to study the effect of lateral composition modulation (LCM) on the behavior of optical phonons. Cross‐sectional transmission electron microscope images revealed that LCM was formed with complex pattern in the n = 1.7 and n = 2 samples grown at 490 °C. Interestingly, both the InP‐ and the GaP‐like longitudinal optical (LO) phonon energies increased systematically as the number of monolayers was increased from n = 1 to n = 2. A significant broadening of the phonon line shapes was also observed for the n = 1.7 and n = 2 samples. In contrast, for samples grown at 425 °C, both the increase of the LO phonon energies and the broadening of the phonon line shapes were observed only when n = 1.7. Our results demonstrate that the optical phonons in the (GaP)n/(InP)n SPS structures are significantly affected in the occurrence of LCM related to the growth temperature and the number of monolayers.Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The spectral dependence of the optical transmission through hexagonal monolayers of silica (a-SiO2) microspheres covered with different amounts of amorphous silicon (a-Si) is studied. The strong changes in the spectral transmissivity can be semi-quantitatively understood by the coupling of the incident electromagnetic field to photonic modes of the combined structure consisting of the hexagonal lattice of a-SiO2 microspheres and a-Si. PACS 78.66.-w; 81.16.Dn; 82.70.Dd; 42.70.Qs  相似文献   

13.
Zn1−xCuxO thin films (x=0, 1.0, 3.0, 5.0%) are prepared on quartz substrate by sol–gel method. The structure and morphology of the samples are investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results show that Cu ions were effectively penetrated into the ZnO crystal lattices with substitutional and interstitial impurities to form stable solid solutions without changing the polycrystalline wurtzite structure. Two peaks at 420 nm (2.95 eV, violet), 485 nm (2.56 eV, blue) have been observed from the photoluminescence (PL) spectra of the samples. It is concluded that the violet peak may correspond to the exciton emission; the blue emission corresponds to the electron transition from the bottom of the conduction band to the acceptor level of zinc vacancy. The optical test shows that the optical band gap Eg is decreased with the increase amount of Cu doping in ZnO. The band gap decrease from 3.40 eV to 3.25 eV gradually. It is also found that the transmission rate is increased rapidly with the increase of Cu ions concentration.  相似文献   

14.
Thin metal layers of Ag, Au, and Ni evaporated onto regular lattices of a-SiO2 microspheres exhibit extraordinary optical transmission within a spectral range between about 400 nm and 2500 nm. PACS 78.66.-w; 81.16.Dn; 82.70.Dd  相似文献   

15.
The most stable crystal structure for an 18R-type order-disorder (OD) intermetallic phase in the Mg–Al–Gd ternary system and its formation processes by annealing at 525?°C have been investigated by means of transmission electron microscopy and scanning transmission electron microscopy. The most energetically favourable polytype at 525?°C is found to be the structurally simplest one, a maximum degree of order polytype (monoclinic, 1M, space group: C2/m), described with a single stacking vector in stacking six-layer structural blocks. The formation of this simplest polytype occurs in the sequence of (i) enrichment of Gd and Al in four consecutive close-packed planes while keeping the hexagonal close-packed stacking of the AB-type, (ii) formation of Al6Gd8 clusters in the four consecutive atomic planes, introducing a stacking fault in the middle of the four consecutive atomic planes, (iii) thickening by the formation of Gd and Al-enriched four consecutive planes at a distance of two or three close-packed Mg atomic planes from the pre-existing Gd and Al-enriched four consecutive atomic planes so as to form six-layer and, sometimes seven-layer structural blocks, (iv) in-plane ordering of Al6Gd8 clusters in the four consecutive atomic planes and the stacking of structural blocks in the preferential stacking positions to form the OD structure, and (v) elimination of different structural blocks (other than six-layer ones) and the long-range ordering in the stacking of structural blocks.  相似文献   

16.
The complex of cadmium with pyrrolidine dithiocarbamate Cd(pdtc)2 has been used as single source precursor for the synthesis of CdS nanoparticles. The formation of CdS nanostructures was achieved by thermal decomposition of the complex under microwave irradiation and conventional heating in presence of hexadecylamine. The CdS nanoparticles with disordered close-packed structure were obtained under microwave irradiation, whereas wurtzite hexagonal phase CdS nanorods were obtained by conventional heating method (up to 150 °C). Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and high resolution transmission electron microscopy (HRTEM) studies also were carried out to study the structure and morphology of nanoparticles. The optical property of the CdS nanoparticles was studied by UV-visible and fluorescence emission spectral studies. Fluorescence measurements on the CdS nanoparticles show a strong emission spectrum with two sub bands that are attributed to band-edge and surface-defect emissions. The reduction of a suitable cadmium metal complex is considered to be one of the single pot methods to generate CdS semiconductor nanoparticles with different shapes and high yield.  相似文献   

17.
We demonstrate the epitaxial growth of a metastable (with respect to the bulk) hcp crystal as well as any other close-packed stacking sequence of colloidal hard spheres. At certain stretched and compressed lattices we furthermore observed growth of a non-close-packed superstructure and of a perfect (100)-aligned fcc crystal. Perfect template-induced hcp-crystal growth occurs at lattice spacings that are larger than for bulk crystallization, indicative of prefreezing. Small mismatches lead to increased out-of-plane displacements. Large mismatches prevent crystallization in the surface layers.  相似文献   

18.
Scanning near-field optical images of hexagonally close-packed layers of polystyrene spherical particles with a diameter of 1.0 microm have been investigated. The layers were composed of particles that were doped either totally or partially with an organic fluorescent dye. Observations were made in the transmission and luminescence excitation modes with a scanning near-field optical microscope (SNOM) with a spatial resolution shorter than the wavelength of light. The patterns observed in the SNOM images are significantly dependent on the microstructures of layers, that is, the layers are either single or double layered, and the particles are either totally or partially doped. These results are discussed in terms of specific modes of electromagnetic waves transmitting across and along the layers after the local excitation at the tip end of the scanning microprobe.  相似文献   

19.
By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanomaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the electronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and exceptional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells.  相似文献   

20.
The optical properties of Pb0.96Ba0.04Sc0.5Nb0.5O3 (PBSN-4) and Pb0.94Ba0.06Sc0.5Nb0.5O3 (PBSN-6) single-crystal solid solutions were studied for the first time. It was shown that the spontaneous phase transition occurring in PBSN-4 with no electric field present is accompanied by a sharp minimum in optical transmission, which indicates the percolation nature of the transition. No sharp changes were observed in the temperature dependence of optical transmission in PBSN-6 single crystals with no electric field applied. However, a very weak electric field, ~0.4 kV/cm, is sufficient to induce the ferroelectric state in PBSN-6 single crystals. It was shown that the destruction of the induced ferroelectric state is a first-order phase transition which is accompanied by an anomalously narrow peak in the small-angle light scattering intensity (or by a minimum in optical transmission) and occurs through the percolation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号