首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel electrode was prepared by implanting NH2 + into an ITO film (NH2/ITO). Gold nanoparticles were deposited on the surface of NH2/ITO electrode. The NH2/ITO and Au/NH2/ITO electrodes were used to determine hemoglobin (Hb) immobilized on the electrodes surfaces. The relationship of the reductive peak current value of Hb among different electrodes was: Hb/ITO:Hb/Au/ITO:Hb/NH2/ITO:Hb/Au/NH2/ITO=1:1.5:2:4. The linkage between the –NH2 implanted into ITO film and the –COOH of Hb was recognized to be the reason for the increase of active Hb coverage on NH2/ITO electrode compared with the ITO electrode. Increase of active Hb coverage on Au/NH2/ITO compared with Au/ITO was attributed to the different amount of gold nanoparticles deposited. The determination of Hb at an Au/NH2/ITO electrode was optimized. Calibration curve was obtained over the range of 1.0 × 10−8 – 1.0 × 10−6 mol · L−1 with a detection limit of 1.0 × 10−8 mol · L−1. Results showed that the novel NH2/ITO and Au/NH2/ITO electrodes exhibited good stability, reproducibility besides better electrochemical performance. Correspondence: Jing Bo Hu, Department of Chemistry, Beijing Normal University, Beijing 100875, China  相似文献   

2.
Au/TiO2/Ti electrode was prepared by a two-step process of anodic oxidation of titanium followed by cathodic electrodeposition of gold on resulted TiO2. The morphology and surface analysis of Au/TiO2/Ti electrodes was investigated using scanning electron microscopy and EDAX, respectively. The results indicated that gold particles were homogeneously deposited on the surface of TiO2 nanotubes. The nanotubular TiO2 layers consist of individual tubes of about 60–90 nm in diameter, and the electrode surface was covered by gold particles with a diameter of about 100–200 nm which are distributed evenly on the titanium dioxide nanotubes. This nanotubular TiO2 support provides a high surface area and therefore enhances the electrocatalytic activity of Au/TiO2/Ti electrode. The electrocatalytic behavior of Au/TiO2/Ti electrodes in the glucose electro-oxidation was studied by cyclic voltammetry. The results showed that Au/TiO2/Ti electrodes exhibit a considerably higher electrocatalytic activity toward the glucose oxidation than that of gold electrode.  相似文献   

3.
Platinum nanoparticles were successfully deposited within a multiwalled carbon nanotube (MWCNT)–Nafion matrix by a cyclic voltammetry method. A Pt(IV) complex was reduced to platinum nanoparticles on the surface of MWCNTs. The resulting Pt nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The Pt–MWCNT–Nafion nanocomposite film-modified glassy carbon electrode had a sharp hydrogen desorption peak at about −0.2 V vs. Ag/AgCl (3 M) in a solution of 0.5 M H2SO4, which is directly related to the electrochemical activity of the Pt nanoparticles presented on the surface of MWCNTs. The electrocatalytic properties of the Pt–MWCNT–Nafion nanocomposite-modified glassy carbon electrode for methanol electrooxidation were investigated by cyclic voltammetry in a 2 M CH3OH + 1 M H2SO4 solution. In comparison with the Pt-coated glassy carbon electrode and the Pt–Nafion modified glassy carbon electrode, the Pt–MWCNT–Nafion-modified electrode had excellent electrocatalytic activity toward methanol electrooxidation. The stability of the Pt–MWCNT–Nafion nanocomposite-modified electrode had also been evaluated.  相似文献   

4.
Gold nanoparticles (GNs) could be efficiently immobilized on binary mixed self-assembled monolayers (SAMs) on a gold surface composed of 1,6-hexanedithiol and 1-octanethiol (nano-Au/SAMs gold electrode). This GN chemically modified electrode was used for electrochemical determination of ascorbic acid (AA) and dopamine (DA) in aqueous media. The result showed that the GN-modified electrode could clearly resolve the oxidation peaks of AA and DA, with a peak-to-peak separation (∆E p) of 110 mV enabling determination of AA and DA in the presence of each other. The linear analytical curves were obtained in the ranges of 0.3–1.4 mM for AA and 0.2–1.2 mM for DA concentrations using differential pulse voltammetry. The detection limits (3σ) were 9.0 × 10−5 M for AA and 9.0 × 10−5 M for DA.  相似文献   

5.
The voltammetric behavior of 2-thiouracil at a silver electrode is described. 2-Thiouracil can deposit or chemisorb anodically at silver surface; when the potential is made more negative the deposited 2-thiouracil undergoes reductive desorption-process, yielding a cathodic peak at about −1.2 V (vs. SCE) in basic phosphate buffer solution (pH 10.3). In the presence of cationic gemini surfactant C4H8–1,4-(C16H33N+ (CH3)2Br)2 (C16–C4–C16) the deposition of 2-thiouracil is greatly improved and the cathodic peak is enhanced. Meanwhile, the peak shifts to more negative potential. The role of C16–C4–C16 is thought to combine and coadsorb with 2-thiouracil at silver surface as well as reduce the electrostatic repulse in the deposited film, thus making it more easy to deposit and desorb at more negative potential. With C16–C4–C16 the lateral interaction of deposits reduces, the reductive desorption becomes faster and the cathodic peak becomes sharper. For geminis with different spacer groups and alkyl chains, their influence is mainly determined by their hydrophobicity and adsorbability. It was found that increasing length of alkyl chain was favorable for obtaining a high and sharp desorption peak, whose peak potential is more negative. For comparison, surfactants with single alkyl-chain and double alkyl-chain, such as cetyltrimethyl ammonium bromide and dicetyldimethyl ammonium bromide were studied. They made the desorption peak shift less due to their weaker combination with 2-thiouracil.  相似文献   

6.
Platinum (Pt) nanoparticles were deposited at the surface of well-aligned multi-walled carbon nanotubes (MWNTs) by potential cycling between +0.50 and −0.70 V at a scanning rate of 50 mV · s−1 in 5 mM Na2PtCl6 solution containing 0.1 M NaCl. The electrocatalytic oxidation of methanol at the nanocomposites of Pt nanoparticles/nanotubes (Ptnano/MWNTs) has been investigated using 0.2 M H2SO4 as supporting electrolyte. The effects of various parameters, such as Pt loading, concentration of methanol, medium temperature as well as the stability of Ptnano/MWNTs electrode, have been studied. Compared to glassy carbon electrode, carbon nanotube electrode significantly enhances the catalytic efficiency of Pt nanoparticles for methanol oxidation. This improvement in performance is due not only to the high surface area and the fast electron transfer rate of nanotubes but also to the highly dispersed Pt nanoparticles as electrocatalysts at the tips and the sidewalls of nanotubes.  相似文献   

7.
Gold–platinum (AuPt) alloy particles were fabricated directly on multi-walled carbon nanotubes (MWNT)–ionic liquid (i.e., trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide, [P6,6,6,14][NTf2]) composite coated glassy carbon electrode (GCE) by electrodeposition method. Scanning electron microscope image showed that they were well-dispersed nanocluster consisting of smaller nanoparticles, and their size was about 70 nm. X-ray diffraction experiment showed that they were single-phase alloy nanomaterial, and the calculated composition was consisting with that obtained by energy dispersive X-ray spectroscopy. The resulting modified electrode (i.e., AuPt–MWNT–[P6,6,6,14][NTf2]/GCE) presented high catalytic activity for the electrochemical oxidation of cysteine. The peak potential of cysteine shifted to 0.42 V (versus saturated calomel electrode) in 0.1 M H2SO4 and the peak current increased greatly in comparison with that on the corresponding Pt (or Au)–MWNT–[P6,6,6,14][NTf2]/GCE. Under the optimized conditions, the oxidation current of cysteine at 0.45 V was linear to its concentration in the range of 5.0 × 10−7 ∼ 4.0 × 10−5 M with a sensitivity of 43.8 mA M−1.  相似文献   

8.
A magnetic mesoporous carbon material (i.e., mesoporous iron oxide/C, mesoFe/C) is synthesized for protein immobilization, using glucose oxidase (GOx) as model. Transmission electron microscopy images show that mesoFe/C has highly ordered porous structure with uniform pore size, and iron oxide nanoparticles are dispersed along the wall of carbon. After adsorption of GOx, the GOx-mesoFe/C composite is separated with magnet. The immobilized GOx remains its natural structure according to the reflection–absorption infrared spectra. When the GOx-mesoFe/C composite is coated on a Pt electrode surface, the GOx gives a couple of quasireversible voltammetric peaks at −0.5 V (vs. saturated calomel electrode) due to the redox of FAD/FADH2. The electron-transfer rate constant (k s) is ca. 0.49 s−1. The modified electrode presents remarkably amperometric response to glucose at 0.6 V. The response time (t 95%) is less than 6 s; the response current is linear to glucose concentration in the range of 0.2–10 mM with a sensitivity of 27 μA mM−1 cm−2. The detection limit is 0.08 mM (S/N = 3). The apparent Michaelis–Menten constant (K mapp) of the enzyme reaction is ca. 6.6 mM, indicating that the GOx immobilized with mesoFe/C has high affinity to the substrate.  相似文献   

9.
Titanium oxide nanotube electrodes were successfully prepared by anodic oxidation on pure Ti sheets in 0.5 wt.% NH4F + 1 wt.% (NH4)2SO4 + 90 wt.% glycerol mixed solutions. Nanotubes with diameter 40–60 nm and length 7.4 μm were observed by field emission scanning electron microscope. The electrochemical and photoelectrochemical characteristics of TiO2 nanotube electrode were investigated using linear polarization and electrochemical impedance spectroscopy techniques. The open-circuit potential dropped markedly under irradiation and with the increase of Cl concentrations. A saturated photocurrent of approximately 1.3 mA cm−2 was observed under 10-W low-mercury lamp irradiation in 0.1 M NaCl solution, which was much higher than film electrode. Meanwhile, the highest photocurrent in NaCl solution implied that the photogenerated holes preferred to combine with Cl. Thus, a significant synergetic effect on active chlorine production was observed in photoelectrocatalytic processes. Furthermore, the generation efficiency for active chlorine was about two times that using TiO2/Ti film electrode by sol–gel method. Finally, the effects of initial pH and Cl concentration were also discussed.  相似文献   

10.
A novel glucose oxidase (GOD) biosensor was fabricated with a protic ionic liquid (PIL) N-ethylimidazolium trifluoromethanesulfonate ([EIm][TfO]) as the modifier of a carbon electrode. Due to the excellent conductivity and the conformational changes of the microenvironment around the GOD, the electrochemical and biocatalytic properties of GOD immobilized on the PIL-based electrode were dramatically enhanced. A couple of well-defined redox peaks could be observed, with a formal potential of −0.476 V. The GOD biosensor presented good catalytic activity to the oxidation of glucose in oxygen-saturated phosphate buffer solutions. The cathodic peak currents of GOD decreased along with glucose concentrations. A linear response in the range 0.005–2.8 mM was obtained with a detection limit of 2.5 μM. The sensitivity and the apparent Michaelis–Menten constant (K m) were estimated to be 14.96 μA mM−1 and 1.53 μM, respectively. In addition, the biosensor remained stable over 30 days, indicating its good chemical and mechanical stability. The glucose content of several serum samples was determined by using the newly developed biosensor, and the results were in good agreement with those obtained by hospital measurements. All results suggested that PILs were a good media for supporting biocatalytic processes on the bioelectrode.  相似文献   

11.
The indirect cathodic reduction of dispersed indigo (Vat Blue 1) with 1,2-dihydroxy-9,10-anthraquinone-3-sulphonate (Alizarin Red S) as soluble mediator system was studied in 0.1 M NaOH by cyclic voltammetry, voltammetry in a flow cell and in galvanostatic reduction experiments. In cyclic voltammetry, the presence of 17.1 mM indigo led to an increase in the diffusion-controlled cathodic peak current (I p)d by a factor of 2. During the reverse scan of the voltammograms the oxidation of reduced indigo could be observed at −650 mV (vs. Ag/AgCl, 3 M KCl). In voltrammograms of 4.0 mM ALS in 0.1 M NaOH, recorded in a flow cell, a current density of 0.40–0.46 mA cm−2 was determined for the diffusion-controlled cathodic current plateau, which appeared in the potential range of −850 to −1,050 mV. In galvanostatic batch electrolysis, solutions containing 2.5–3.8 mM reduced indigo were prepared and analysed by spectrophotometry and tested in dyeing experiments. The dyeing behaviour of the reduced indigo was independent of the reduction technique used. Energy consumption for electrochemical reduction of 1 kg of indigo could be estimated to 6.5 kWh kg−1.  相似文献   

12.
CeO2 nanoparticles approximately 12 nm in size were synthesized and subsequently characterized by XRD, TEM and UV-vis spectroscopy. Then, a gold electrode modified with CeO2 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode demonstrated strong catalytic effects with high stability towards electrochemical oxidation of rutin. The anodic peak currents (measured by differential pulse voltammetry) increased linearly with the concentration of rutin in the range of 5.0 × 10−7–5.0 × 10−4 mol · L−1. The detection limit (S/N = 3) was 2.0 × 10−7 mol · L−1. The relative standard deviation (RSD) of 8 successive scans was 3.7% for 5.0 × 10−6 mol · L−1 rutin. The method showed excellent sensitivity and stability, and the determination of rutin in tablets was satisfactory.  相似文献   

13.
Nanostructured platinum-gold (Pt–Au) hybrid film modified glassy carbon electrode (GCE) was fabricated by electro-deposition method in the presence of 2 × 10−4 mol l−1 l-cysteine. To examine the surface morphological analysis, the (Pt–Au) hybrid film were electrochemically deposited on transparent semiconductor indium tin oxide (ITO) electrodes for scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies. From the SEM analysis, it was observed that the deposited nanoplatinum (250–400 nm) was formed as a cauliflower-shaped structure with the gold nanoparticles (30–90 nm). The concentration variation of additive l-cysteine results in the formation of cauliflower-shaped platinum nanoparticles. Further, the Pt–Au hybrid film modified GCE could be used for the detection of catecholamine neurotransmitters epinephrine (EP), norepinephrine (NEP) individually and in the presence of ascorbic acid (AA) in pH 7 phosphate-buffered solutions (PBS). Furthermore, the proposed Pt–Au hybrid film could be applied for the detection of epinephrine in injection solution and ascorbic acid from commercially available vitamin C tablets.  相似文献   

14.
A new solid-state pH sensor has been constructed based on a poly 3,4-dihydro-2-hydoxyquinoxaline (HOQ) thin film electrochemically deposited onto a Pt disc electrode whose surface had previously been modified with Pt nanoparticles by electrochemical depositing from HPtCl6–H2SO4 solution at −0.2 V. The poly HOQ film was deposited from HAc–NaAc solution by cycling the potential between 0.4 V and 1.1 V. The typical response of the pH sensor and its reversibility was investigated. The emf signal was linear over the pH range of 2 to 13 with a super-Nernstian slope of 63.3 mV/pH unit. The response time ranged from several seconds at a pH of around 7 up to 2.5 min at pH 13. The performance of the pH sensor was examined by measuring organic acid, amine and amino groups on the surface of composite nanomaterial samples and sat isfactory results were obtained.  相似文献   

15.
A highly sensitive hydroxylamine (HA) electrochemical sensor is developed based on electrodeposition of gold nanoparticles with diameter of 8 nm on the pre-synthesized polypyrrole matrix and formed gold nanoparticles/polypyrrole (GNPs/PPy) composite on glassy carbon electrode. The electrochemical behavior and electrocatalytic activity of the composite-modified electrode are investigated. The GNPs/PPy composite exhibits a distinctly higher electrocatalytic activity for the oxidation of HA than GNPs with twofold enhancement of peak current. The enhanced electrocatalytic activity is attributed to the synergic effect of the highly dispersed gold metal particles and PPy matrix. The overall numbers of electrons involved in HA oxidation, the electron transfer coefficient, catalytic rate constant, and diffusion coefficient are investigated by chronoamperometry. The sensor presents two wide linear ranges of 4.5 × 10−7–1.2 × 10−3 M and 1.2 × 10−3–19 × 10−3 M with the detection limit of 4.5 × 10−8 M (s/n = 3). In addition, the proposed electrode shows excellent sensitivity, selectivity, reproducibility, and stability properties.  相似文献   

16.
A simple method was used to fabricate flavin adenine dinucleotide (FAD)/NiOx nanocomposite on the surface of glassy carbon (GC) electrode. Cyclic voltammetry technique was applied for deposition nickel oxide nanostructures onto GC surface. Owing to its high biocompatibility and large surface area of nickel oxide nanomaterials with immersing the GC/NiOx-modified electrode into FAD solution for a short period of time, 10–140 s, a stable thin layer of the FAD molecules immobilized onto electrode surface. The FAD/NiOx films exhibited a pair of well-defined, stable, and nearly reversible CV peaks at wide pH range (2–10). The formal potential of adsorbed FAD onto nickel oxide nanoparticles film, E o′ vs. Ag/AgCl reference electrode is −0.44 V in pH 7 buffer solutions was similar to dissolved FAD and changed linearly with a slope of 58.6 mV/pH in the pH range 2–10. The surface coverage and heterogeneous electron transfer rate constant (k s ) of FAD immobilized on NiOx film glassy carbon electrode are 4.66 × 10−11 mol cm−2 and 63 ± 0.1 s−1, indicating the high loading ability of the nickel oxide nanoparticles and great facilitation of the electron transfer between FAD and nickel oxide nanoparticles. FAD/NiOx nanocomposite-modified GC electrode shows excellent electrocatalytic activity toward S2O82− reduction at reduced overpotential. Furthermore, rotated modified electrode illustrates good analytical performance for amperometric detection of S2O82−. Under optimized condition, the concentration calibration range, detection limit, and sensitivity were 3 μM–1.5 mM, 0.38 μM and 16.6 nA/μM, respectively.  相似文献   

17.
Using 1-ethyl-2-methylimidazolium trifluoroacetate (EMImTfa) as the supporting electrolyte, a couple of well-defined and reversible redox peaks of Myb could be observed at the basal plane graphite (BPG) electrode through direct electron transfer between the protein and the BPG electrode, whose anodic and cathodic peak potentials were at −0.098 V and −0.144 V vs. Ag | AgCl, respectively. Both anodic and cathodic peak currents increased linearly with the potential scan rates. Compared with the supporting electrolyte of phosphate buffer solution, EMImTfa played an important role for the direct electron transfer between Myb and the BPG electrode. Further investigation suggested that Myb was adsorbed tightly on the surface of the BPG electrode in the presence of EMImTfa to form a stable, approximate monolayer Myb film. Myb adsorbed on the BPG electrode surface could retain its biological activity and showed a remarkable electrocatalytic activity for the reduction of H2O2 in an EMImTfa aqueous solution. Based on these, a third-generation biosensor could be constructed to directly detect the concentration of H2O2 in EMImTfa aqueous solution with a limit of detection of 3.24 × 10−8 M. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 3, pp. 363–368. The text was submitted by the authors in English.  相似文献   

18.
Prussian blue-modified nanoporous gold film (PB-NPGF) electrode was fabricated in this study. The fabrication was realized through electrodeposition of Prussian blue nanoparticles on the skeleton of a nanoporous gold film electrode without destroying the porous structure of NPGF electrode. The resulting PB-NPGF composite electrode showed very high electrocatalytic activity, repeatability, and stability to the reduction of H2O2. For instance, its activity was about twenty times that of the PB-modified polished gold electrode. More importantly, the sensitivity of the PB-NPGF composite electrode reaches as high as 10.6 μA μM−1 cm−2. This PB-NPGF composite electrode is very promising in the fields of catalysis, analysis, and so on.  相似文献   

19.
The electrocatalytic oxidation of aspirin and acetaminophen on nanoparticles of cobalt hydroxide electrodeposited on the surface of a glassy carbon electrode in alkaline solution was investigated. The process of oxidation and the kinetics have been investigated using cyclic voltammetry, chronoamperometry, and steady-state polarization measurements. Voltammetric studies have indicated that in the presence of drugs, the anodic peak current of low valence cobalt species increases, followed by a decrease in the corresponding cathodic current. This indicates that drugs are oxidized on the redox mediator which is immobilized on the electrode surface via an electrocatalytic mechanism. With the use of Laviron’s equation, the values of anodic and cathodic electron-transfer coefficients and charge-transfer rate constant for the immobilized redox species were determined as α s,a = 0.72, α s,c = 0.30, and k s = 0.22 s−1. The rate constant, the electron transfer coefficient, and the diffusion coefficient involved in the electrocatalytic oxidation of drugs were reported. It was shown that by using the modified electrode, aspirin and acetaminophen can be determined by amperometric technique with detection limits of 1.88 × 10−6 and 1.83 × 10−6 M, respectively. By analyzing the content of acetaminophen and aspirin in bulk forms using chronoamperometric and amperometric techniques, the analytical utility of the modified electrode was achieved. The method was also proven to be valid for analyzing these drugs in urine samples.  相似文献   

20.
An amperometric sensor for the determination of indole-3-acetic acid (IAA) based on the CeCl3-DHP film modified gold electrode was developed. CeCl3 was dissolved into water in the presence of dihexadecyl hydrogen phosphate (DHP). The IAA sensor was prepared via evaporating solvent of the CeCl3-DHP dispersion on the gold electrode surface. The amperometric response of IAA on the CeCl3-DHP film modified gold electrode was investigated. The experimental results indicate that the passivation of the electrode due to the adsorption of the oxidation product of IAA decreases significantly at the CeCl3-DHP film modified gold electrode, in contrast to that at the bare and the DHP modified gold electrode. The experimental parameters were optimized and an electrochemical method for the determination of IAA was established. The oxidation peak current is linearly with the concentration of IAA from 1 × 10−7 to 2 × 10−5 mol l−1 and the detection limit is 3 × 10−8 mol l−1. The relative standard deviation of eight measurements is 3.2% for 5 × 10−7 mol l−1 IAA. The IAA in plant leaves were extracted and determined by the IAA sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号