首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this paper, an integrated due date assignment and production and batch delivery scheduling problem for make-to-order production system and multiple customers is addressed. Consider a supply chain scheduling problem in which n orders (jobs) have to be scheduled on a single machine and delivered to K customers or to other machines for further processing in batches. A common due date is assigned to all the jobs of each customer and the number of jobs in delivery batches is constrained by the batch size. The objective is to minimize the sum of the total weighted number of tardy jobs, the total due date assignment costs and the total batch delivery costs. The problem is NP-hard. We formulate the problem as an Integer Programming (IP) model. Also, in this paper, a Heuristic Algorithm (HA) and a Branch and Bound (B&B) method for solving this problem are presented. Computational tests are used to demonstrate the efficiency of the developed methods.  相似文献   

2.
We consider a batch scheduling problem on a single machine which processes jobs with resource dependent setup and processing time in the presence of fuzzy due-dates given as follows:1. There are n independent non-preemptive and simultaneously available jobs processed on a single machine in batches. Each job j has a processing time and a due-date.2. All jobs in a batch are completed together upon the completion of the last job in the batch. The batch processing time is equal to the sum of the processing times of its jobs. A common machine setup time is required before the processing of each batch.3. Both the job processing times and the setup time can be compressed through allocation of a continuously divisible resource. Each job uses the same amount of the resource. Each setup also uses the same amount of the resource.4. The due-date of each job is flexible. That is, a membership function describing non-decreasing satisfaction degree about completion time of each job is defined.5. Under above setting, we find an optimal batch sequence and resource values such that the total weighted resource consumption is minimized subject to meeting the job due-dates, and minimal satisfaction degree about each due-date of each job is maximized. But usually we cannot optimize two objectives at a time. So we seek non-dominated pairs i.e. the batch sequence and resource value, after defining dominance between solutions.A polynomial algorithm is constructed based on linear programming formulations of the corresponding problems.  相似文献   

3.
We consider the problem of scheduling multi-operation jobs on a singe machine to minimize the total completion time. Each job consists of several operations that belong to different families. In a schedule each family of job operations may be processed as batches with each batch incurring a set-up time. A job is completed when all of its operations have been processed. We first show that the problem is strongly NP-hard even when the set-up times are common and each operation is not missing. When the operations have identical processing times and either the maximum set-up time is sufficiently small or the minimum set-up time is sufficiently large, the problem can be solved in polynomial time. We then consider the problem under the job-batch restriction in which the operations of each batch is partitioned into operation batches according to a partition of the jobs. We show that this case of the problem can be solved in polynomial time under a certain condition.  相似文献   

4.
In this paper, we present a mixed-integer fuzzy programming model and a genetic algorithm (GA) based solution approach to a scheduling problem of customer orders in a mass customizing furniture industry. Independent job orders are grouped into multiple classes based on similarity in style so that the required number of setups is minimized. The family of jobs can be partitioned into batches, where each batch consists of a set of consecutively processed jobs from the same class. If a batch is assigned to one of available parallel machines, a setup is required at the beginning of the first job in that batch. A schedule defines the way how the batches are created from the independent jobs and specifies the processing order of the batches and that of the jobs within the batches. A machine can only process one job at a time, and cannot perform any processing while undergoing a setup. The proposed formulation minimizes the total weighted flowtime while fulfilling due date requirements. The imprecision associated with estimation of setup and processing times are represented by fuzzy sets.  相似文献   

5.
In this paper we consider a single-machine common due window assignment and scheduling problem with batch delivery cost. The starting time and size of the due window are decision variables. Finished jobs are delivered in batches. There is no capacity limit on each delivery batch, and the cost per batch delivery is fixed and independent of the number of jobs in the batch. The objective is to find a job sequence, a delivery date for each job, and a starting time and a size for the due window that jointly minimize the total cost comprising earliness, weighted number of tardy jobs, job holding, due window starting time and size, and batch delivery. We provide some properties of the optimal solution and present polynomial-time algorithms for the problem.  相似文献   

6.
We address scheduling problems with job-dependent due-dates and general (possibly nonlinear and asymmetric) earliness and tardiness costs. The number of distinct due-dates is substantially smaller than the number of jobs, thus jobs are partitioned to classes, where all jobs of a given class share a common due-date. We consider the settings of a single machine and parallel identical machines. Our objective is of a minmax type, i.e., we seek a schedule that minimizes the maximum earliness/tardiness cost among all jobs.  相似文献   

7.
In many practical situations, batching of similar jobs to avoid setups is performed while constructing a schedule. This paper addresses the problem of non-preemptively scheduling independent jobs in a two-machine flow shop with the objective of minimizing the makespan. Jobs are grouped into batches. A sequence independent batch setup time on each machine is required before the first job is processed, and when a machine switches from processing a job in some batch to a job of another batch. Besides its practical interest, this problem is a direct generalization of the classical two-machine flow shop problem with no grouping of jobs, which can be solved optimally by Johnson's well-known algorithm. The problem under investigation is known to be NP-hard. We propose two O(n logn) time heuristic algorithms. The first heuristic, which creates a schedule with minimum total setup time by forcing all jobs in the same batch to be sequenced in adjacent positions, has a worst-case performance ratio of 3/2. By allowing each batch to be split into at most two sub-batches, a second heuristic is developed which has an improved worst-case performance ratio of 4/3. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

8.
We consider a scheduling model in which several batches of jobs need to be processed by a single machine. During processing, a setup time is incurred whenever there is a switch from processing a job in one batch to a job in another batch. All the jobs in the same batch have a common due date that is either externally given as an input data or internally determined as a decision variable. Two problems are investigated. One problem is to minimize the total earliness and tardiness penalties provided that each due date is externally given. We show that this problem is NP-hard even when there are only two batches of jobs and the two due dates are unrestrictively large. The other problem is to minimize the total earliness and tardiness penalties plus the total due date penalty provided that each due date is a decision variable. We give some optimality properties for this problem with the general case and propose a polynomial dynamic programming algorithm for solving this problem with two batches of jobs. We also consider a special case for both of the problems when the common due dates for different batches are all equal. Under this special case, we give a dynamic programming algorithm for solving the first problem with an unrestrictively large due date and for solving the second problem. This algorithm has a running time polynomial in the number of jobs but exponential in the number of batches.  相似文献   

9.
The single machine batch scheduling problem to minimize the weighted number of late jobs is studied. In this problem,n jobs have to be processed on a single machine. Each job has a processing time, a due date and a weight. Jobs may be combined to form batches containing contiguously scheduled jobs. For each batch, a constant set-up time is needed before the first job of this batch is processed. The completion time of each job in the batch coincides with the completion time of the last job in this batch. A job is late if it is completed after its due date. A schedule specifies the sequence of jobs and the size of each batch, i.e. the number of jobs it contains. The objective is to find a schedule which minimizes the weighted number of late jobs. This problem isNP-hard even if all due dates are equal. For the general case, we present a dynamic programming algorithm which solves the problem with equal weights inO(n 3) time. We formulate a certain scaled problem and show that our dynamic programming algorithm applied to this scaled problem provides a fully polynomial approximation scheme for the original problem. Each algorithm of this scheme has a time requirement ofO(n 3/ +n 3 logn). A side result is anO(n logn) algorithm for the problem of minimizing the maximum weight of late jobs.Supported by INTAS Project 93-257.  相似文献   

10.
We consider the problem of scheduling n independent jobs on two identical parallel machines, with a limit on the number of jobs that can be assigned to each single machine, so as to minimize the total weighted completion time of the jobs. We study a semidefinite programming-based approximation algorithm for solving this problem and prove that the algorithm has a worst case ratio at most 1.1626.  相似文献   

11.
In this paper we consider the problem of scheduling n jobs on a single batch processing machine in which jobs are ordered by two customers. Jobs belonging to different customers are processed based on their individual criteria. The considered criteria are minimizing makespan and maximum lateness. A batching machine is able to process up to b jobs simultaneously. The processing time of each batch is equal to the longest processing time of jobs in the batch. This kind of batch processing is called parallel batch processing. Optimal methods for three cases are developed: unbounded batch capacity, b > n, with compatible job groups and bounded batch capacity, b  n, with compatible and non compatible job groups. Each job group represents a different class of customers and the concept of being compatible means that jobs which are ordered by different customers are allowed to be processed in a same batch. We propose an optimal method for the problem with incompatible groups and unbounded batches. About the case when groups are incompatible and bounded batches, our proposed method is considered as optimal when the group with maximum lateness objective has identical processing times. We regard this method, however, as a heuristic when these processing times are different. When groups are compatible and batches are bounded we consider another problem by assuming the same processing times for the group which has the maximum lateness objective and propose an optimal method for this problem.  相似文献   

12.
本文研究一类批容量有界的并行分批、平行机在线排序问题。模型中有n个相互独立的工件J={J1,…,Jn}要在m台批处理机上加工。批处理机每次可同时加工至多B(Bj(1≤j≤n)的到达时间为rj,加工时间为1,工件是否会到达事先未知,而只有等到工件的到达时间才能获知它的到达。目标为最小化工件的最大完工时间。针对该排序问题,本文设计了两个竞争比均达到最好可能的在线算法。  相似文献   

13.
研究了单机环境下生产与配送的协同排序问题.有多个工件需要在一台机器上进行加工,加工完的工件需要分批配送到一个客户.每批工件只能在固定的几个配送时刻出发,不同的配送时刻对应着不同的配送费用.我们的目标是找到生产与配送的协同排序,极小化排序的时间费用与配送费用的加权和.研究了排序理论中主要的四个目标函数,构建了单机情况下的具体模型,分析了问题的复杂性,对于配送费用单调非增的情况给出了它们的最优算法.  相似文献   

14.
成组排序具有深刻的实际应用背景,是近年来国外研究得较多的一个热点.已有的某些动态规划算法的复杂性随分类数的增长呈指数型增长趋势,本文用“归并”和解不超过四个新的子问题的方法把分类数较大时的问题转化为分类数较小时的相应问题,简化了问题的求解.  相似文献   

15.
The classical single-machine scheduling and due-date assignment problem of Panwalker et al. [Panwalker, S.S., Smith, M.L., Seidmann, A., 1982. Common due date assignment to minimize total penalty for the one machine scheduling problem. Operations Research 30(2) (1982) 391–399] is the following: All n jobs share a common due-date, which is to be determined. Jobs completed prior to or after the due-date are penalized according to a cost function which is linear and job-independent. The objective is to minimize the total earliness–tardiness and due-date cost. We study a generalized version of this problem in which: (i) the earliness and tardiness costs are allowed to be job dependent and asymmetric and (ii) jobs are processed on parallel identical machines. We focus on the case of unit processing-time jobs. The problem is shown to be solved in polynomial (O(n4)) time. Then we study the special case with no due-date cost (a classical problem known in the literature as TWET). We introduce an O(n3) solution for this case. Finally, we study the minmax version of the problem, (i.e., the objective is to minimize the largest cost incurred by any of the jobs), which is shown to be solved in polynomial time as well.  相似文献   

16.
张少强  马希荣 《应用数学》2006,19(2):374-380
本文研究一个目标是最小化最大交付时间的能分批处理的非中断单机排序问题.这个问题来源于半导体制造过程中对芯片煅烧工序的排序.煅烧炉可以看成一个能同时最多加工B(〈n)个工件的处理机.此外,每个工件有一个可以允许其加工的释放时间和一个完成加工后的额外交付时间.该问题就是将工件分批后再依批次的排序加工,使得所有工件都交付后所需的时间最短.我们设计了一个用时O(f(l/ε)n^5/2)的多项式时间近似方案,其中关于1/ε的指数函数厂(1/ε)对固定的ε是个常数.  相似文献   

17.
We study a scheduling problem with deteriorating jobs, that is, jobs whose processing times are an increasing function of their start times. We consider the case of a single machine and linear job-independent deterioration. The problem is to determine an optimal combination of the due-date and schedule so as to minimize the sum of due-date, earliness and tardiness penalties. We give an O(n log n) time algorithm to solve this problem.  相似文献   

18.
The problem of scheduling jobs on a single machine is considered. It is assumed that the jobs are classified into several groups and the jobs of the same group have to be processed contiguously. A sequence independent set-up time is incurred between each two consecutively scheduled groups. A schedule is specified by a sequence for the groups and a sequence for the jobs in each group. The quality of a schedule is measured by two critera ordered by their relative importance. The objective is to minimize the maximum cost, the secondary criterion, subject to the schedule is optimal with respect to total weighted completion time, the primary criterion. A polynomial time algorithm is presented to solve this bicriterion group scheduling problem. It is shown that this algorithm can also be modified to solve the single machine group scheduling problem with several ordered maximum cost criteria and arbitrary precedence constraints.  相似文献   

19.
This paper addresses scheduling a set of jobs on a single machine for delivery in batches to one customer or to another machine for further processing. The problem is a natural extension of that of minimising the sum of weighted flow times, considering the possibility of delivering jobs in batches and introducing batch delivery costs. The scheduling objective adopted is that of minimising the sum of weighted flow times and delivery costs. The extended problem arises in the context of coordination between machine scheduling and a distribution system in a supply chain network. Structural properties of the problem are investigated and used to devise a branch-and-bound solution method. For the special case, when the maximum number of batches is fixed, the branch-and-bound scheme provided shows significant improvements over an existing dynamic-programming algorithm.  相似文献   

20.
The classical weighted minsum scheduling and due-date assignment problem (with earliness, tardiness and due-date costs) was shown to be polynomially solvable on a single machine, more than two decades ago. Later, it was shown to have a polynomial time solution in the case of identical processing time jobs and parallel identical machines. We extend the latter setting to parallel uniform machines. We show that the two-machine case is solved in constant time. Furthermore, the problem remains polynomially solvable for a given (fixed) number of machines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号