首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The preparation of lustrous conducting polyacetylene films by the polymerization of acetylene with vinyltitanium species as initiators was studied. Organotitanium species were generated by the alkylation of titanium vinylcarbene complexes with tert‐butyl chloride. Solid‐state 13C NMR and IR analyses of the obtained polyacetylene indicated that polyacetylene with a trans configuration was produced. The use of titanocene(II) species Cp2Ti[P(OEt)3]2 and titanium vinylcarbene complexes for the preparation of polyacetylene films was also studied. The morphology of the films and the mechanisms of polymerization are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2663–2669, 2002  相似文献   

2.
Titanium tert-butoxide (Ti(OC(CH3)3)4; Ti(O t Bu)4) was chemically modified with catechol (C6H4(OH)2) and hydrolysis and condensation behavior of a resultant modified alkoxide was studied. Spectroscopic results revealed that the reaction between titanium tert-butoxide and catechol resulted in the formation of catecholate groups (C6H4O2 2–) bound to titanium and corresponding release of tert-butanol. The mass spectrometry and cryoscopy indicated that main species was a dimer [(C6H4O2)2Ti2(O t Bu)4]. The hydrolysis of the modified alkoxide in the system with Ti:tetrahydrofuran (THF):H2O = 1:10:x (x = 0.5–10) resulted in the partial hydrolysis, and all the hydrolyzed products after the drying under reduced pressure were soluble in THF and chloroform.  相似文献   

3.
The novel, dimeric titanium(IV )‐substituted phosphotungstate [(TiP2W15O55OH)2]14? ( 1 ) has been synthesized and characterized by IR and 31P NMR spectroscopy, elemental analysis, and single‐crystal Xray diffraction. The polyanion consists of two [P2W15O56]12? Wells–Dawson moieties linked through two titanium(IV ) centers. Polyanion 1 is a dilacunary species and represents the first Ti‐containing sandwich‐type structure. The titanium centers are octahedrally coordinated by three oxygen atoms of each P2W15O56 subunit. The edge‐shared TiO6 units are symmetrically equivalent and have no terminal ligands. Polyanion 1 shows a chiral distortion within each P2W15Ti fragment. We also report on the structural characterization of the tetrameric, supramolecular species [{Ti3P2W15O57.5(OH)3}4]24? ( 2 ). Polyanion 2 is composed of four equivalent P2W15Ti3 fragments, fused together through terminal Ti? O bonds, leading to a structure with Td symmetry.  相似文献   

4.
Dip- or spin-coating and characterization of titania (TiO2) thin films from various aqueous solutions have been studied. The aqueous titanium solutions mainly used in this study were halogen- and chelate-free solutions with the concentrations up to 1.4 M derived from titanium isopropoxide (TIP) with tetramethylammonium hydroxide (TMAOH) or some alkylamines, while aqueous and alcoholic solutions containing titanium atoms stabilized chelating ligands were examined for comparison. The TiO2 films prepared from the TIP-TMAOH solution were already crystallized at 350°C to anatase form and those formed at 600°C had high transparency and refractive indices of 2.40. No carbon residue in the film prepared at 400°C was detected by XPS. The pure anatase form was sustained up to 850°C. Interestingly, it was found that the (004) preferentially oriented anatase films were obtained from TIP-lactic acid (LA) system until 700°C. The solutions containing citric acid (CA) or alkanolamines yielded anatase and rutile form fired at the temperatures equal to or higher than 600°C. Carbon residue was detected in the film fired at 400°C. The film thickness monotonically decreased from the upper to the bottom ends of the substrate. However, it was found that the thickness uniformity was drastically improved by an addition of sucrose to the aqueous solutions. The effects of the solution composition and polyhydroxy compounds on the crystal modifications of formed films and the film uniformity are discussed.  相似文献   

5.
The complexes [Ti(η5-C5H4R)2(NCSe)2] [R = Me ( 1 ), SiMe3 ( 2 ), or SiEt3 ( 3 )] were prepared from the corresponding dichlorides with KSeCN in acetone; the oxygen-bridged complex [Ti(η5-C5H4Me)2(NCSe)]2O ( 4 ) was formed by air oxidation of ( 1 ). All complexes were characterized by elemental microanalysis and by IR, 1H NMR, and mass spectroscopies. An X-ray analysis of ( 1 ) and ( 4 ) confirms the results of IR studies that these complexes contain N-bonded selenocyanate ligands. In molecules ( 1 ) and ( 4 ) there is a pseudotetrahedral arrangement about each titanium. The N? C? Se chains are linear with normal N? C and C? Se bond distances. The dimer ( 4 ) contains an approximately linear Ti? O? Ti bridge (angle 173.4º) with a Ti? O bond distance of 1.838 Å. The structural results are compared with those in related compounds.  相似文献   

6.
Ring‐opening polymerization of 1,4‐dioxan‐2‐one in bulk was initiated by three titanium alkoxides, titanium dichlorodiisopropoxide (TiCl2(OiPr)2), titanium chlorotriisopropoxide (TiCl(OiPr)3), and titanium tetraisopropoxide (Ti(OiPr)4). The results indicate that the polymerization rate increased with number of OiPr groups in the initiator. High conversion of monomer (90%) and high molecular weight (11.9 × 104 g/mol) of resulting polymer can be achieved in only 5 min at 60 °C with Ti(OiPr)4 as an initiator. Analysis on nuclear magnetic resonance (NMR) spectra suggests the initiating sites for TiCl2(OiPr)2, TiCl(OiPr)3, and Ti(OiPr)4 to be 1.9, 2.6, and 3.8, respectively. Coordination‐insertion mechanism for the polymerization via cleavage of the acyl–oxygen bonds of the monomer was proved by NMR investigation. Kinetic studies indicate that polymerization initiated by Ti(OiPr)4 followed a first‐order kinetics, with an apparent activation energy of 33.7 kJ/mol. It is noteworthy that this value is significantly lower than earlier reported values with other catalysts, namely La(OiPr)3 (50.5 kJ/mol) and Sn(Oct)2 (71.8 kJ/mol), which makes it an attractive catalyst for reactive extrusion polymerization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
In the presence of titanium(IV) tetraethoxide ((EtO)4Ti), menthyl arylglyoxylates are prepared by transesterification of ethyl arylglyoxylates and natural (−)‐(1R,2S,5R)‐menthol. Using menthyl as a chiral auxiliary, the corresponding novel (R)‐menthyl 2‐aryl‐2‐hydroxybutanoates are synthesized by the addition of Et2Zn with menthyl arylglyoxylates. The structures of the products are characterized by IR and 1H‐ and 13C‐NMR spectroscopy, mass spectrometry, and elemental analysis. The diastereoselectivities are analyzed by HPLC. The addition reactions are completed with good yields and high diastereoisomeric excess (de up to 95%), and, after hydrolysis, the (R)‐2‐aryl‐2‐hydroxybutanoic acids are obtained with high optical purities.  相似文献   

8.
Reaction of Ti(OCH2CH2OR)4 (R?CH3 and C2H5) with 8‐hydroxyquinoline in benzene at room temperature resulted in the formation of Ti(C9H6NO)2(OCH2CH2OR)2, characterized by IR, 1H‐NMR, UV and mass spectroscopies. The molecular structure of Ti(C9H6NO)2(OCH2CH2OCH3)2 has been determined by single‐crystal X‐ray structure analysis. The geometry at titanium is a distorted octahedron, with the nitrogen atoms of quinolinate occupying the trans position with respect to oxygens of the 2‐methoxyethoxy groups. The prepared quinolinate derivatives of titanium alkoxides are very stable towards hydrolysis and harsh conditions are required for hydrolytic cleavage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
In this investigation, several spectroscopic and analytical techniques were used to determine the chemical compositions and structures of the lead, zirconium, titanium, and Pb-(Zr, Ti) alkoxides involved in the sol-gel synthesis of PZT thin films. These techniques included 1H, 13C, and 207Pb NMR; FT-IR; gas chromatography; Karl Fischer titration; and number-average molecular weights (M n ) determined by cryoscopy. It was found that the titanium precursor had a M n of 548 and a formula of [Ti(OCH2CH2OCH3)4]1.6; the zirconium precursor had a M n of 1015 and a formula of [Zr(OCH2CH2OCH3)4]2.6; and the lead precursor had a formula Pb6(OOCCH3)5(OCH2CH2OCH3)7. 4 H2O and a molecular weight of 2131 (M n =2113). It was observed that residual water from the incomplete dehydration of lead acetate trihydrate coupled with released water due to the esterification of acetic acid caused M-O-M (M=Pb, Zr, Ti) bonds in the Pb-(Zr, Ti) alkoxide. Two possible isomeric structures of the Pb-(Zr, Ti) alkoxide have been proposed. They are both cyclic and have a formula of Pb2MMO2(OR)8(ROH)2, (MM=Zr and/or Ti) and a molecular weight of 1336 (M n =1386).  相似文献   

10.
Extraction of titanium by nitrogen-containing phenol-formaldehyde oligomer Yarresin B from peroxide sulfate solutions was studied. Molecular dynamic (MD), molecular mechanic (MM), ZINDO/1 semiempirical (single-point calculations; program package HyperChem, Release 7.52, Hypercube Inc.) calculations, and the Cambridge Structure Database (ConQuest 1.8) were used to solve the structure of the extracted complex [Ti(O)2OR(OH)2]2SO4.  相似文献   

11.
Binuclear complexes for olefin polymerization have attracted great attention due to their unique catalytic properties compared with their mononuclear counterparts. Here a series of p-phenylene-bridgedbis-β-carbonylenamine ligands and their binuclear Ti complexes Ti 2 L 1 – Ti 2 L 3 were prepared and characterized by 1H NMR, 13C NMR, Fourier transform infrared spectroscopy, and elemental analysis. The binuclear complex Ti 2 L 3 bearing an octylthio sidearm was further investigated by single-crystalX-ray diffraction, which revealed that the ligand was of β-imino enol form, with one titanium atom ligated with six other atoms, forming a deformed octahedral configuration. Furthermore, the ligand in Ti 2 L 3 adopted a cis configuration, which was different from the trans configuration of its m-phenylene-bridged derivatives. These binuclear complexes ( Ti 2 L 1 – Ti 2 L 3 ) could catalyze ethylene polymerization and copolymerization with 1,5-hexadiene(1,5-HD) efficiently under modified methylaluminoxane activation. Compared with the mononuclear complex TiL 5 , the binuclear catalysts were thermally more stable and showed higher activity for ethylene polymerization at higher temperatures. The activity of these titanium complexes for the copolymerization of ethylene with 1,5-HD were over 106 g/mol Ti.h.atm, almost twice as high as for homopolymerization. Compared with the mononuclear analogue TiL 5 and the m-substituted binuclear derivative Ti 2 L 4 , binuclear catalyst Ti 2 L 2 showed higher activity and insertion rate of the comonomer. The activity of Ti 2 L 2 was two to three times higher than that of TiL 5 and Ti 2 L 4 , indicating that p-substituted binuclear catalysts generate clear bimetallic synergistic effect for the copolymerization of ethylene and 1,5-HD. Meanwhile, 1,5-HD takes 1,3-cyclopentyl form in the polymer by 1,3-insertion. The copolymer prepared by binuclear catalysts had higher molecular weight and wider molecular weight distribution than that prepared by the mononuclear catalyst.  相似文献   

12.
Using13C and1H NMR spectroscopy, titanium(IV) alkylperoxo complexes Ti(OOtBu)n(OiPr)4−n with n=1, 2, 3 and 4 were characterized in the reaction of Ti(OiPr)4 withtBuOOH in CH2Cl2 and CDCl3.  相似文献   

13.
In situ sol-gel chemistry was used to create inorganic/perfluoro-organic hybrids wherein titanium oxide outer regions of SiO2[1—x/4](OH)x nanoparticles, which were preformed in Nafion® membranes, were created by postreaction with tetrabutyltitanate (TBT). U-shaped Si and Ti distributions across the membrane thickness direction were determined via x-ray energy dispersive spectroscopy. Ti/Si ratio profiles are also U-shaped, indicating more Ti relative to Si in near-surface regions. IR spectroscopy verified structural bonding of TiO4 units onto SiO2 nanoparticles and indicated that alkoxide hydrolysis is not complete. Reacted silicon oxide nanophases retain the topological unconnectedness possessed by the corresponding unreacted phase. IR bands signifying molecular loops and linear fragments of Si(SINGLE BOND)O(SINGLE BOND)Si groups are seen. 29Si solid-state NMR spectroscopy indicated that, for an inorganic uptake of 16.3 wt %, the Q3 state of SiO4 is most populated although Q4 is only slightly less prominent and Q2 and Q1 are either small or absent. The silicon oxide component, although not being predominantly linear, retains a measure of uncondensed SiOH groups. Tensile stress vs. strain analyses suggested that TBT postreaction links nanoparticles, causing them to be contiguous over considerable distances. This percolative intergrowth occurs in near-surface regions generating a glassy zone. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Titanium(IV) citrate complexes with different anions Na3[Ti(H2cit)2(Hcit)] · 9H2O (1), K4[Ti(H2cit)(Hcit)2] · 4H2O (2), K5[Ti(Hcit)3] · 4H2O (3) and Na7[TiH(cit)3] · 18H2O (4) (H4cit = citric acid) were isolated in pure forms from the solutions of titanate and citrate at various pH values. X-ray structural analyses revealed the presence of a monomeric tricitrato titanium unit in the four complexes. Each Ti(IV) ion is coordinated octahedrally by the three citrate ligands in different protonated forms. The citrate ligand chelates bidentately to the titanium ion through its negatively charged α-alkoxy and α-carboxy groups. This is consistent with the large downfield 13C NMR shifts for the carbon atoms bearing the α-alkoxy and α-carboxy groups. The very strong hydrogen-bonds existing in the protonated and deprotonated β-carboxy groups may be the key factor for the stabilization of the titanium citrate complexes. When the pH value is lower than 7.0, 13C NMR spectra of 1:3 Ti:citrate solutions are similar to those of the titanium citrate complexes isolated at the corresponding pH values. The dissociation of free citrate increases with the rise of pH value. However, 13C NMR spectra of 1:3 Ti:citrate solutions indicate that there may exist different citrate titanium species when the pH value is higher than 7.0.  相似文献   

15.
A new titanium-rich highly ordered 2-D hexagonal mesoporous titanium silicate has been synthesized using a mixture of cationic (cetyltrimethylammonium bromide, CTAB) and non-ionic (Brij-35, C12H25-(OC2H4)23-OH, a polyether and aliphatic hydrocarbon chain surfactant) mixed surfactant system as the supramolecular structure directing agent (SDA) in the presence of tartaric acid (TA) as a mineralizer of Ti(IV). XRD, N2 adsorption and TEM data suggested the presence of mesophase with hexagonal pore arrangements and the UV-visible, FT IR and XPS studies suggested the incorporation of mostly tetrahedral titanium (IV) species in the highly ordered silica network. This mesoporous titanium silicate material showed excellent catalytic activity and selectivity in the epoxidation of styrene using dilute aqueous H2O2 as oxidant.  相似文献   

16.
Syntheses and structures of five imido‐bridged dinuclear titanium complexes and two (bis)ligand‐coordinated mononuclear titanium complexes are reported. Addition of 1 or 2 equiv. of Schiff base ligand (((1H‐pyrrol‐2‐yl)methylene)amino)‐2,3‐dihydro‐1H‐inden‐2‐ol (H2L) to Ti(NMe2)4 resulted in transamination with 4 equiv. of dimethylamides generating a (bis)ligand‐coordinated complex Ti(L)2 ( 1 ). Treatment of Ti(NMe2)4 with 1 equiv. of tBuNH2 followed by addition of 1 equiv. of H2L afforded an imido‐bridged complex [Ti(L)(NtBu)]2 ( 2 ). 1:1:1:1 reaction of Ti(NMe2)4/RNH2/H2L/py(or phen) produced imido‐bridgedcomplexes [Ti(L)(NPh)(py)]2 ( 3 ), [Ti(L)(4‐F‐PhN)(py)]2·Tol ( 4 ·Tol), [Ti(L)(4‐Cl‐PhN)(py)]2·Tol·THF ( 5 ·Tol·THF), [Ti(L)(4‐Br‐PhN)(py)]2·Tol ( 6 ·Tol) and a (bis)ligand‐coordinated complex Ti(L)2·phen ( 7 ) (py = pyridine, phen = 1,10‐phenanthroline). Attempts to prepare the monomeric titianium imido complexes were unsuccessful. DFT studies show that the assumed compound which contains Ti = N species is less stable than imido‐bridged Ti‐N(R)‐Ti complexes, providing the better understanding of the experimental results.  相似文献   

17.
Oligomer of 1-decene was synthesized with Ziegler-Natta catalyst which consisted of TiCl4 and Et2AlCl, using MgCl2 as support. The effects of temperature, Al/Ti ratio, time, and concentration of the catalyst on polymerization behaviors were investigated. The results showed that the catalyst system was desirable for the oligomerization of 1-decene with good catalytic activity, 143.8 kg oligo/mol Ti h, under typical conditions. The oligomer obtained was characterized with GC-MASS, GC and 13C NMR methods. Those results indicated that the oligomer was of a mixture consisting of di-, tri-, tetra- and pentamer. The 13C NMR data also implied that chain propagation of the oligomer involved primarily head-to-tail 1,2-insertions, as well as head-to-head and tail-to-tail 2,1-insertions.  相似文献   

18.
We have used 31P NMR (MAS) and IR spectroscopy and also chemical analysis to show that when Si- and Ti,Si-MCM-41 mesoporous molecular sieves are treated with phosphorus oxychloride, surface-anchored silicophosphate and titanophosphate compounds are formed of the type (Si—O) x —{PO(OH)3–x } and (Ti—O) x —{PO(OH)3–x } (x = 1, 2), and also compounds with the structure of titanium hydrophosphate and pyrophosphate.  相似文献   

19.
Dichlorotitanium(IV) trithiophosphates of the type TiCl2[(RO)P(S)S2] (where R = Me, Et, Prn, Pri, Bun, Bus, Bui, Ami, Ph and cyclohexyl) have been synthesized for the first time by the reaction of titanium tetrachloride with potassium trithiophosphates in a 1:1 molar ratio in anhydrous benzene. Sol-gel chemistry of these titanium(IV) compounds has been studied in dry benzene by treatment with hydrogen sulfide gas. These newly synthesized derivatives have been characterized by elemental analysis (C, H, S, Cl, and Ti), molecular weight measurement, and spectral [IR and multinuclear NMR (1H, 13C, and 31P)] studies. The bonding mode of trithiophosphate ligands and tentative structure around titanium(IV) are discussed.  相似文献   

20.
The solvent‐ and catalyst free synthesis of two β‐thio ketones L1a and L1b is reported. L1a , L1b , and a β‐seleno ketone L1c were successfully employed as ligand precursors in the synthesis of a novel series of cationic titanium complexes 4a – 4c via a well‐established reaction sequence: insertion of the carbonyl functional group into the polarized Ti–Cq,exo bond of the monopentafulvene complex Cp*Ti(Cl)(π‐η5:σ–η1‐C5H4=CR2) ( 1 ) (CR2 = adamantylidene), subsequent methylation, and final activation with B(C6F5)3. The cationic titanium complexes 4a – 4c bear twofold functionalized cyclopentadienyl [Cp,O,Ch (Ch = S, Se)] ligand frameworks built directly in the coordination sphere of the metal, in which the chalcogen ether functionalities do not coordinate to the central metal atoms as demonstrated by NMR experiments. Consequently, Cp,O σ,π chelating ligand systems are formed with free coordination sites at the central titanium atoms and pendant chalcogen ether moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号