首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

2.
Treatment of the organoamido complexes [Rh(2)(mu-4-HNC(6)H(4)Me)(2)(L(2))(2)] (L(2) = 1,5-cyclooctadiene (cod), L = CO) with nBuLi gave solutions of the organoimido species [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(L(2))(2)]. Further reaction of [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(cod)(2)] with [Rh(2)(mu-Cl)(2)(cod)(2)] afforded the neutral tetranuclear complex [Rh(4)(mu-4-NC(6)H(4)Me)(2)(cod)(4)] (2), which rationalizes the direct syntheses of 2 from [Rh(2)(mu-Cl)(2)(cod)(2)] and Li(2)NC(6)H(4)Me. Reactions of [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(CO)(4)] with chloro complexes such as [Rh(2)(mu-Cl)(2)(CO)(4)], [MCl(2)(cod)] (M = Pd, Pt), and [Ru(2)(mu-Cl)(2)Cl(2)(p-cymene)(2)] afforded the homo- and heterotrinuclear complexes PPN[Rh(3)(mu-4-NC(6)H(4)Me)(2)(CO)(6)] (5; PPN=bis(triphenylphosphine)iminium), [(CO)(4)Rh(2)(mu-4-NC(6)H(4)Me)(2)M(cod)] (M = Pd (6), Pt(7)) and [(CO)(4)Rh(2)(mu-4-NC(6)H(4)Me)(2)Ru(p-cymene)] (8), while the reaction with [AuCl(PPh(3))] gave the tetranuclear compound [(CO)(4)Rh(2)(mu--4-NC(6)H(4)Me)(2)[Au(PPh(3))](2)] (9). The structures of complexes 6, 8, and 9 were determined by X-ray diffraction studies. The anion of 5 reacts with [AuCl(PPh(3))] to give the butterfly cluster [[Rh(3)(mu-4-NC(6)H(4)Me)(2)(CO)(6)]Au(PPh(3))] (10), in which the Au atom is bonded to two rhodium atoms. Reaction of the anion of 5 with [Rh(cod)(NCMe)(2)](BF(4)) gave the tetranuclear complex [Rh(4)(mu-4-NC(6)H(4)Me)(2)(CO)(6)(cod)] (11) in which the Rh(cod) fragment is pi-bonded to one of the arene rings, while the reaction of the anion of 5 with [PdCl(2)(cod)] afforded the heterotrinuclear complex 6 through a metal exchange process.  相似文献   

3.
Treatment of [[Ti(eta5-C5Me5)(mu-NH)]3(mu3-N)] (1) with the diolefin complexes [[MCl(cod)]2] (M = Rh, Ir; cod = 1,5-cyclooctadiene) in toluene afforded the ionic complexes [M-(cod)(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)]Cl [M = Rh (2), Ir (3)]. Reaction of complexes 2 and 3 with [Ag(BPh4)] in dichloromethane leads to anion metathesis and formation of the analogous ionic derivatives [M(cod)(mu3-NH)3Ti3-(eta5-C5Me5)3(mu3-N)][BPh4] [M = Rh (4), Ir (5)]. An X-ray crystal structure determination for 5 reveals a cube-type core [IrTi3N4] for the cationic fragment, in which 1 coordinates in a tripodal fashion to the iridium atom. Reaction of the diolefin complexes [[MCl(cod))2] (M = Rh, Ir) and [[RhCl(C2H4)2]2] with the lithium derivative [[Li(mu3-NH)2(mu3-N)-Ti3(eta5-C5Me5)3(mu3-N)]2] x C7H8 (6 C7H8) in toluene gave the neutral cube-type complexes [M(cod)(mu-NH)2(mu3-N)Ti3-(eta5-C5Me5)3(mu3-N)] [M = Rh (7), Ir (8)] and [Rh(C2H4)2(mu3-NH)2(mu3-N)Ti3(eta5-C5Me5)3(mu3-N)] (9), respectively. Density functional theory calculations have been carried out on the ionic and neutral azaheterometallocubane complexes to understand their electronic structures.  相似文献   

4.
MeNH(2) reacts with silver salts AgX (2:1) to give [Ag(NH(2)Me)(2)]X [X = TfO = CF(3)SO(3) (1.TfO) and ClO(4) (1.ClO(4))]. Neutral mono(amino) Rh(III) complexes [Rh(Cp*)Cl(2)(NH(2)R)] [R = Me (2a), To = C(6)H(4)Me-4 (2b)] have been prepared by reacting [Rh(Cp*)Cl(mu-Cl)](2) with RNH(2) (1:2). The following cationic methyl amino complexes have also been prepared: [Rh(Cp*)Cl(NH(2)Me)(PPh(3))]TfO (3.TfO), from [Rh(Cp*)Cl(2)(PPh(3))] and 1.TfO (1:1); [Rh(Cp*)Cl(NH(2)R)2]X, where R = Me, X = Cl, (4a.Cl), from [Rh(Cp*)Cl(mu-Cl)]2 and MeNH2 (1:4), or R = Me, X = ClO4 (4a.ClO4), from 4a.Cl and NaClO4 (1:4.8), or R = To, X = TfO (4b.TfO), from [Rh(Cp*)Cl(mu-Cl)](2), ToNH(2) and TlTfO (1:4:2); [Rh(Cp*)(NH(2)Me)(tBubpy)](TfO)(2) (tBubpy = 4,4'-di-tert-butyl-2,2'-bipyridine, 5.TfO), from 2a, TlTfO and tBubpy (1:2:1); [Rh(Cp*)(NH(2)Me)(3)](TfO)2 (6.TfO) from [Rh(Cp*)Cl(mu-Cl)](2) and 1.TfO (1:4). 2-6 constitute the first family of methyl amino complexes of rhodium. 1 and 4a.ClO(4) react with acetone to give, respectively, the methyl imino complexes [Ag{N(Me)=CMe(2)}()]X [X = TfO (7.TfO), ClO(4) (7.ClO(4))], and [Rh(Cp*)Cl(Me-imam)]ClO(4) [8.ClO(4), Me-imam = N,N'-N(Me)=C(Me)CH(2)C(Me)(2)NHMe]. 7.X (X = TfO, ClO(4)) are new members of the small family of methyl acetimino complexes of any metal whereas 8.ClO4 results after a double acetone condensation to give the corresponding bis(methyl acetimino) complex and an aldol-like condensation of the two imino ligands. The acetimino complex [Ag(NH=CMe(2))(2)]ClO(4) reacts with [Rh(Cp*)Cl(imam)]ClO(4) [1:1, imam = N,N'-NH=C(Me)CH(2)C(Me)(2)NH(2)] to give [Rh(Cp*)(imam)(NH=CMe(2))](ClO(4))(2) (9a.ClO(4)). 8.ClO(4) reacts with AgClO(4) (1:1) in MeCN to give [Rh(Cp*)(Me-imam)(NCMe)](ClO(4))2 (9b.ClO(4)), which in turn reacts with XyNC (Xy = C(6)H(3)Me(2)-2,6) or with MeNH(2) (1:1) to give [Rh(Cp*)(Me-imam)L](ClO(4))(2) [L = XyNC (9c.ClO(4)), MeNH(2) (9d.ClO(4))]. 6.TfO reacts with acetophenone to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=N(Me)-2}(NH(2)Me)]TfO (10a.TfO), the first complex resulting from such a condensation and cyclometalation reaction. In turn, 10a.TfO reacts with isocyanides RNC (1:1) at room temperature to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=NMe-2}(CNR)]TfO [R = tBu (10b.TfO), Xy (10c.TfO)], or 1:12 at 60 degrees C to give [Rh(Cp*){C,N-C(=NXy)C(6)H(4)C(Me)=N(Me)-2}(CNXy)]TfO (11.TfO). The crystal structures of 9a.ClO(4).acetone-d6, 9c.ClO(4), and 10a.TfO have been determined.  相似文献   

5.
The reaction of 14e [L(Me)Rh(coe)] (1; L(Me)[double bond]ArNC(Me)CHC(Me)NAr, Ar[double bond]2,6-Me(2)C(6)H(3); coe[double bond]cis-cyclooctene) with phenyl halides and thiophenes was studied to assess the competition between sigma coordination, arene pi coordination and oxidative addition of a C-X bond. Whereas oxidative addition of the C-Cl and C-Br bonds of chlorobenzene and bromobenzene to L(Me)Rh results in the dinuclear species [[L(Me)Rh(Ph)(micro-X)](2)] (X=Cl, Br), fluorobenzene yields the dinuclear inverse sandwich complex [[L(Me)Rh](2)(anti-micro-eta(4):eta(4)-PhF)]. Thiophene undergoes oxidative addition of the C-S bond to give a dinuclear product. The reaction of 1 with dibenzo[b,d]thiophene (dbt) in the ratio 1:2 resulted in the formation of the sigma complex [L(Me)Rh(eta(1)-(S)-dbt)(2)], which in solution dissociates into free dbt and a mixture of the mononuclear complex [L(Me)Rh(eta(4)-(1,2,3,4)-dbt)] and the dinuclear complex [[L(Me)Rh](2)(micro-eta(4)-(1,2,3,4):eta(4)-(6,7,8,9)-dbt)]. The latter could be obtained selectively by the 2:1 reaction of 1 and dbt. Reaction of 1 with diethyl sulfide produces [L(Me)Rh(Et(2)S)(2)], which in the presence of hydrogen loses a diethyl sulfide ligand to give [L(Me)Rh(Et(2)S)(H(2))] and catalyses the hydrogenation of cyclooctene.  相似文献   

6.
The heteroscorpionate ligands [HB(taz)(2)(pz(R))](-) (pz(R) = pz, pz(Me2), pz(Ph)) and [HB(taz)(pz)(2)](-), synthesised from the appropriate potassium hydrotris(pyrazolyl)borate salt and 4-ethyl-3-methyl-5-thioxo-1,2,4-triazole (Htaz), react with [{Rh(cod)(μ-Cl)}(2)] to give [Rh(cod)Tx] {Tx = HB(taz)(2)(pz), HB(taz)(2)(pz(Me2)), HB(taz)(2)(pz(Ph)), HB(taz)(pz)(2)}; the heteroscorpionate rhodaboratrane [Rh{B(taz)(2)(pz(Me2))}{HB(taz)(2)(pz(Me2))}] is the only isolable product from the reaction of [{Rh(nbd)(μ-Cl)}(2)] with K[HB(taz)(2)(pz(Me2))]. Carbonylation of the cod complexes gave a mixture of [Rh(CO)(2)Tx] and [(RhTx)(2)(μ-CO)(3)] which reacts with PR(3) to give [Rh(CO)(PR(3))Tx] (R = Cy, NMe(2), Ph, OPh). In the solid state the complexes are square planar with the particular structure dependent on the steric and/or electronic properties of the scorpionate and ancillary ligands. The complex [Rh(cod){HB(taz)(pz)(2)}] has the heteroscorpionate κ(2)[N(2)]-coordinated to rhodium with the B-H bond directed away from the rhodium square plane while [Rh(cod){HB(taz)(2)(pz(Me2))}] is κ(2)[SN]-coordinated, with the B-H bond directed towards the metal. The complexes [Rh(CO)(PPh(3)){HB(taz)(2)(pz)}] and [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Me2))}] are also κ(2)[SN]-coordinated but with the pyrazolyl ring cis to PPh(3); in the former the B-H bond is directed towards rhodium while in the latter the ring is pseudo-parallel to the rhodium square plane, as also found for [Rh(CO)(2){HB(taz)(2)(pz(Me2))}]. The analogues [Rh(CO)(PR(3)){HB(taz)(2)(pz(Me2))}] (R = Cy, NMe(2)) have the phosphines trans to the pyrazolyl ring. Uniquely, [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Ph))}] is κ(2)[S(2)]-coordinated. A qualitative mechanism is given for the rapid ring-exchange, and hence isomerisation, observed in solution.  相似文献   

7.
Titanium complexes with chelating alkoxide ligands [TiCp*(O(2)Bz)(OBzOH)] (1) and [TiCp*(Me)((OCH(2))(2)Py)] (2) were synthesised by reaction of [TiCp*Me(3)] (Cp*=eta(5)-C(5)Me(5)) with 2-hydroxybenzyl alcohol ((HO)(2)Bz) and 2,6-pyridinedimethanol ((HOCH(2))(2)Py), respectively. Complex 1 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) to yield the early-late heterobimetallic complexes [TiCp*(O(2)Bz)(2)M(cod)] [M=Rh (3), Ir (4)]. Carbon monoxide readily replaces the COD ligand in 3 to give the rhodium dicarbonyl derivative [TiCp*(O(2)Bz)(2)Rh(CO)(2)] (5). Compound 2 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) with protonolysis of a Tibond;Me bond to give [TiCp*((OCH(2))(2)Py)(mu-O)M(cod)] [M=Rh (6), Ir (7)]. The molecular structures of complexes 3, 5 and 7 were established by single-crystal X-ray diffraction studies.  相似文献   

8.
Ar-B(OH)2 (1a: Ar = C6H4OMe-4, 1b: Ar = C6H3Me2-2,6) react immediately with Rh(OC6H4Me-4)(PMe3)3 (2) in 5 : 1 molar ratio at room temperature to generate [Rh(PMe3)4]+[B5O6Ar4]- (3a: Ar = C6H4OMe-4, 3b: Ar = C6H3Me2-2,6). p-Cresol (92%/Rh), anisole (80%/Rh) and H2O (364%/Rh) are formed from 1a and 2. The reaction of 1a with 2 for 24 h produces [Rh(PMe3)4]+[B5O6(OH)4]- (4) as a yellow solid. This is attributed to hydrolytic dearylation of once formed 3a because the direct reaction of 3a with excess H2O forms 4. An equimolar reaction of 2 with phenylboroxine (PhBO)3 causes transfer of the 4-methylphenoxo ligand from rhodium to boron to produce [Rh(PMe3)4]+[B3O3Ph3(OC6H4Me-4)]- (5). Arylboronic acids 1a and 1b react with Rh(OC6H4Me-4)(PR3)3 (6: R = Et, 8: R = Ph) and with Rh(OC6H4Me-4)(cod)(PR3) (11: R = iPr, 12: R = Ph) to form [Rh(PR3)4]+[B5O6Ar4]- (7a: R = Et, Ar = C6H4OMe-4, 7b: R = Et, Ar = C6H3Me2-2,6, 9a: R = Ph, Ar = C6H3Me2-2,6) and [Rh(cod)(PR3)(L)]+[B5O6Ar4]- (13b: R = iPr, L = acetone, Ar = C6H3Me2-2,6, 14a: R = Ph, L = PPh3, Ar = C6H4OMe-4, 14b: R = Ph, L = PPh3, Ar = C6H3Me2-2,6), respectively. Hydrolysis of 14a yields [Rh(cod)(PPh3)2]+[B5O6(OH)4]- (15) quantitatively.  相似文献   

9.
A straightforward to assemble catalytic system for the intermolecular hydroacylation reaction of beta-S-substituted aldehydes with activated and unactivated alkenes and alkynes is reported. These catalysts promote the hydroacylation reaction between beta-S-substituted aldehydes and challenging substrates, such as internal alkynes and 1-octene. The catalysts are based upon [Rh(cod)(DPEphos)][ClO(4)] (DPEphos=bis(2-diphenylphosphinophenyl)ether, cod=cyclooctadiene) and were designed to make use of the hemilabile capabilities of the DPEphos ligand to stabilise key acyl-hydrido intermediates against reductive decarbonylation, which results in catalyst death. Studies on the stoichiometric addition of aldehyde (either ortho-HCOCH(2)CH(2)SMe or ortho-HCOC(6)H(4)SMe) and methylacrylate to precursor acetone complexes [Rh(acetone)(2)(DPEphos)][X] [X=closo-CB(11)H(6)Cl(6) or [BAr(F) (4)] (Ar(F)=3,5-(CF(3))(2)C(6)H(3))] reveal the role of the hemilabile DPEphos ligand. The crystal structure of [Rh(acetone)(2)(DPEphos)][X] shows a cis-coordinated diphosphine ligand with the oxygen atom of the DPEphos distal from the rhodium. Addition of aldehyde forms the acyl hydride complexes [Rh(DPEphos)(COCH(2)CH(2)SMe)H][X] or [Rh(DPEphos)(COC(6)H(4)SMe)H][X], which have a trans-spanning DPEphos ligand and a coordinated ether group. Compared to analogous complexes prepared with dppe (dppe=1,2-bis(diphenylphosphino)ethane), these DPEphos complexes show significantly increased resistance towards reductive decarbonylation. The crystal structure of the reductive decarbonylation product [Rh(CO)(DPEphos)(EtSMe)][closo-CB(11)H(6)I(6)] is reported. Addition of alkene (methylacrylate) to the acyl-hydrido complexes forms the final complexes [Rh(DPEphos)(eta(1)-MeSC(2)H(4)-eta(1)-COC(2)H(4)CO(2)Me)][X] and [Rh(DPEphos)(eta(1)-MeSC(6)H(4)-eta(1)-COC(2)H(4)CO(2)Me)][X], which have been identified spectroscopically and by ESIMS/MS. Intermediate species in this transformation have been observed and tentatively characterised as the alkyl-acyl complexes [Rh(CH(2)CH(2)CO(2)Me)(COC(2)H(4)SMe)(DPEphos)][X] and [Rh(CH(2)CH(2)CO(2)Me)(COC(6)H(4)SMe)(DPEphos)][X]. In these complexes, the DPEphos ligand is now cis chelating. A model for the (unobserved) transient alkene complex that would result from addition of alkene to the acyl-hydrido complexes comes from formation of the MeCN adducts [Rh(DPEphos)(MeSC(2)H(4)CO)H(MeCN)][X] and [Rh(DPEphos)(MeSC(6)H(4)CO)H(MeCN)][X]. Changing the ligand from DPEphos to one with a CH(2) linkage, [Ph(2)P(C(6)H(4))](2)CH(2), gave only decomposition on addition of aldehyde to the acetone precursor, which demonstrated the importance of the hemiabile ether group in DPEphos. With [Ph(2)P(C(6)H(4))](2)S, the sulfur atom has the opposite effect and binds too strongly to the metal centre to allow access to productive acetone intermediates.  相似文献   

10.
The reaction of AgClO(4) and NH(3) in acetone gave [Ag(NH=CMe(2))(2)]ClO(4) (1). The reactions of 1 with [RhCl(diolefin)](2) or [RhCl(CO)(2)](2) (2:1) gave the bis(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(2)]ClO(4) [diolefin = 1,5 cyclooctadiene = cod (2), norbornadiene = nbd (3)] or [Rh(CO)(2)(NH=CMe(2))(2)]ClO(4) (4), respectively. Mono(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(PPh(3))]ClO(4) [diolefin = cod (5), nbd (6)] or [RhCl(diolefin)(NH=CMe(2))] [diolefin = cod (7), nbd (8)] were obtained by reacting 2 or 3 with PPh(3) (1:1) or with Me(4)NCl (1:1.1), respectively. The reaction of 4 with PR(3) (R = Ph, To, molar ratio 1:2) led to [Rh(CO)(NH=CMe(2))(PR(3))(2)]ClO(4) [R = Ph (9), C(6)H(4)Me-4 = To (10)] while cis-[Rh(CO)(NH=CMe(2))(2)(PPh(3))]ClO(4) (11) was isolated from the reaction of 1 with [RhCl(CO)(PPh(3))](2) (1:1). The crystal structures of 5 and [Ag[H(2)NC(Me)(2)CH(2)C(O)Me](PTo(3))]ClO(4) (A), a product obtained in a reaction between NH(3), AgClO(4), and PTo(3), have been determined.  相似文献   

11.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

12.
Competitive major carbon-carbon bond activation (CCA) and minor carbon-hydrogen bond activation (CHA) channels are identified in the reaction between rhodium(II) meso-tetramesitylporphyrin [Rh(II)(tmp)] (1) and 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) (2). The CCA and CHA pathways lead to formation of [Rh(III)(tmp)Me] (3) and [Rh(III)(tmp)H] (5), respectively. In the presence of excess TEMPO, [Rh(II)(tmp)] is regenerated from [Rh(III)(tmp)H] with formation of 2,2,6,6-tetramethyl-piperidine-1-ol (TEMPOH) (4) via a subsequent hydrogen atom abstraction pathway. The yield of the CCA product [Rh(III)(tmp)Me] increased with higher temperature at the cost of the CHA product TEMPOH in the temperature range 50-80 degrees C. Both the CCA and CHA pathways follow second-order kinetics. The mechanism of the TEMPO carbon-carbon bond activation was studied by means of kinetic investigations and DFT calculations. Broken symmetry, unrestricted b3-lyp calculations along the open-shell singlet surface reveal a low-energy transition state (TS1) for direct TEMPO methyl radical abstraction by the Rh(II) radical (SH2 type mechanism). An alternative ionic pathway, with a somewhat higher barrier, was identified along the closed-shell singlet surface. This ionic pathway proceeds in two sequential steps: Electron transfer from TEMPO to [Rh(II)(por)] producing the [TEMPO]+ [RhI(por)]- cation-anion pair, followed by net CH3+ transfer from TEMPO+ to Rh(I) with formation of [Rh(III)(por)Me] and (DMPO-like) 2,2,6-trimethyl-2,3,4,5-tetrahydro-1-pyridiniumolate. The transition state for this process (TS2) is best described as an SN2-like nucleophilic substitution involving attack of the d(z)2 orbital of [Rh(I)(por)]- at one of the C(Me)-C(ring) sigma* orbitals of [TEMPO]+. Although the calculated barrier of the open-shell radical pathway is somewhat lower than the barrier for the ionic pathway, R-DFT and U-DFT are not likely comparatively accurate enough to reliably distinguish between these possible pathways. Both the radical (SH2) and the ionic (SN2) pathway have barriers which are low enough to explain the experimental kinetic data.  相似文献   

13.
The compound syn-[{Rh(mu-NH{p-tolyl})(CNtBu)(2)}(2)] (1) oxidatively adds C--Cl bonds of alkyl chlorides (RCl) and dichloromethane to each metal centre to give the cationic complexes syn-[{Rh(mu-NH{p-tolyl})(eta(1)-R)(CNtBu)(2)}(2)(mu-Cl)]Cl and anti-[{Rh(mu-NH{p-tolyl})Cl(CNtBu)(2)}(2)(mu-CH(2))]. Reaction of 1 with the chiral alkyl chloride (-)-(S)-ClCH(Me)CO(2)Me (R*Cl) gave [{Rh(mu-NH{p-tolyl})(eta(1)-R*)(CNtBu)(2)}(2)(mu-Cl)]Cl ([3]Cl) as an equimolecular mixture of the meso form (R,S)-[3]Cl-C(s) and one enantiomer of the chiral form [3]Cl-C(2). This reaction, which takes place in two steps, was modeled step-by-step by reacting the mixed-ligand complex syn-[(cod)Rh(mu-NH{p-tolyl})(2)Rh(CNtBu)(2)] (4) with R*Cl, as a replica of the first step, to give [(cod)Rh(mu-NH{p-tolyl})(2)RhCl(eta(1)-R*)(CNtBu)(2)] (5) with racemization of the chiral carbon. Further treatment of 5 with CNtBu to give the intermediate [(CNtBu)(2)Rh(mu-NH{p-tolyl})(2)RhCl(eta(1)-R*)(CNtBu)(2)], followed by reaction with R*Cl reproduced the regioselectivity of the second step to give (R,S)-[3]Cl-C(s) and [3]Cl-C(2) in a 1:1 molar ratio. Support for an S(N)2 type of reaction with inversion of the configuration in the second step was obtained from a similar sequence of reactions of 4 with ClCH(2)CO(2)Me first, then with CNtBu, and finally with R*Cl to give [(CNtBu)(2)(eta(1)-CH(2)R)Rh(mu-NH{p-tolyl})(2)(mu-Cl)Rh(eta(1)-R*)(CNtBu)(2)]Cl (R = CO(2)Me, [7]Cl) as a single enantiomer with the R configuration at the chiral carbon. The reactions of 1 with (+)-(S)-XCH(2)CH(CH(3))CH(2)CH(3) (X = Br, I) gave the related complexes [{Rh(mu-NH{p-tolyl})(eta(1)-CH(2)CH(CH(3))CH(2)CH(3))(CNtBu)(2)}(2)(mu-X)]X, probably by following an S(N)2 profile in both steps.  相似文献   

14.
In ethanol, hydrocarbonylation reactions of alkenes catalysed by triethylphosphine complexes of rhodium give alcohols as the products with low linear selectivity, whilst rhodium complexes of PPri3 or PBui3 give mainly aldehydes, again with low linear selectivity. Modelling the proposed acyl intermediates by studying [Rh(C(O)Me)(CO)m(L)4-m] (L = PPri3 or PBui3) shows that they exist as monophosphine species under the normal reaction conditions. In the absence of CO, [Rh(=C(OH)Me)(CO)L2]+ can also be formed. The implications of these NMR studies for the chemo- and regio-selectivity of the hydrocarbonylation reactions are discussed.  相似文献   

15.
The reactions of [Rh2(kappa2-acac)2(mu-CPh2)2(mu-PR3)] (PR3= PMe34, PMe2Ph 7, PEt38) with an equimolar amount of Me3SiX (X = Cl, Br, I) afforded the unsymmetrical complexes [Rh2X(kappa2-acac)(mu-CPh2)2(mu-PR3)]5, 9-12, which contain the phosphine in a semi-bridging coordination mode. From 4 and excess Me3SiCl, the tetranuclear complex [[Rh2Cl(mu-Cl)(mu-CPh2)2(mu-PMe3)]2]6 was obtained. In contrast, the reaction of 4 with an excess of Me3SiX (X = Br, I) yielded the dinuclear complexes [Rh2X2(mu-CPh2)2(mu-PMe3)]13, 14 in which, as shown by the X-ray crystal structure analysis of 14, the bridging phosphine is coordinated in a truly symmetrical bonding mode. While related compounds with PEt3 and PMe2Ph as bridging ligands were prepared on a similar route, the complex [Rh2Cl2(mu-CPh2)2(mu-PiPr3)]19 was obtained from the mixed-valence species [(PiPr3)Rh(mu-CPh2)2Rh(kappa2-acac)2]17 and HCl. The reaction of [Rh2(kappa2-acac)2(mu-CPh2)2(mu-SbiPr3)]3 with AsMe3 gave the related Rh(mu-AsMe3)Rh compound 21. With Me3SiCl, the acac ligands of 21 can be replaced stepwise by chloride to give [Rh2Cl(kappa2-acac)(mu-CPh2)2(mu-AsMe3)]23 and [[Rh2Cl(mu-Cl)(mu-CPh2)2(mu-AsMe3)]2]24, the latter being isomorphous to the phosphine-bridged dimer 6.  相似文献   

16.
Photochemical reaction of [CH2(eta5-C5H4)2][Rh(C2H4)2]2 1 with dmso led to the stepwise formation of [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(dmso)] 2a and [CH2(eta5-C5H4)2][Rh(C2H4)(dmso)]2 2b. Photolysis of 1 with vinyltrimethylsilane ultimately yields three isomeric products of [CH2(eta5-C5H4)2][Rh(CH2=CHSiMe3)2]2, 3a, 3b and 3c which are differentiated by the relative orientations of the vinylsilane. When this reaction is undertaken in d6-benzene, H/D exchange between the solvent and the alpha-proton of the vinylsilane is revealed. In addition evidence for two isomers of the solvent complex [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(eta2-toluene)] was obtained in these and related experiments when the photolysis was completed at low temperature without substrate, although no evidence for H/D exchange was observed. Photolysis of 1 with Et3SiH yielded the sequential substitution products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiEt3)H] 4a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H]2 4b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H][Rh(SiEt3)2(H)2] 4c and [CH2(eta5-C5H4)2][Rh(SiEt3)2(H)2]2 4d; deuteration of the alpha-ring proton sites, and all the silyl protons, of 4d was demonstrated in d6-benzene. This reaction is further complicated by the formation of two Si-C bond activation products, [CH2(eta5-C5H4)2][RhH(mu-SiEt2)]2 5 and [CH2(eta5-C5H4)2][(RhEt)(RhH)(mu-SiEt2)2] 6. Complex 5 was also produced when 1 was photolysed with Et2SiH2. When the photochemical reactions with Et3SiH were repeated at low temperatures, two isomers of the unstable C-H activation products, the vinyl hydrides [CH2(eta5-C5H4)2][{Rh(SiEt3)H}{Rh(SiEt3)}(mu-eta1,eta2-CH=CH2)] 7a and 7b, were obtained. Thermally, 4c was shown to form the ring substituted silyl migration products [(eta5-C5H4)CH2(C5H3SiEt3)][Rh(SiEt3)2(H)2]2 8 while 4b formed [CH2(C5H3SiEt3)2][Rh(SiEt3)2(H)2]2 (9a and 9b) upon reaction with excess silane. The corresponding photochemical reaction with Me3SiH yielded the expected products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiMe3)H] 10a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H]2 10b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H][Rh(SiMe3)2(H)2] 10c and [CH2(eta5-C5H4)2][Rh(SiMe3)2(H)2]2 10d. However, three Si-C bond activation products, [CH2(eta5-C5H4)2][(RhMe)(RhH)(mu-SiMe2)2] 11, [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhMe)(mu-SiMe2)2] 12 and [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhH)(mu-SiMe2)2] 13 were also obtained in these reactions.  相似文献   

17.
A series of novel half-sandwich M(I) and M(III) complexes (M = Co, Rh) bearing the N-heterocyclic carbene ligand 1,3-dimesitylimidazol-2-ylidene (IMes) have been prepared and characterized. Thus, (eta5-C(5)R(5))M(IMes)(C(2)H(4))(M = Co, Rh; R = H, Me) were obtained from the corresponding bis(ethene) complexes (eta5-C(5)R(5))M(C(2)H(4))(2), except for CpRh(IMes)(C(2)H(4)) which was prepared via the novel 16-electron Rh(I) compound Rh(IMes)(C(2)H(4))(2)Cl. The carbonyl compounds (eta5-C(5)R(5))Co(IMes)(CO)(R = H, Me) were synthesized by thermal CO substitution of (eta5-C(5)R(5))Co(CO)(2). A diamagnetic, apparently 16-electron Co(III) compound [CpCo(IMes)I](+)[I(3)(-)] was obtained from CpCo(IMes)(CO) and I(2). Finally, Co(III) and Rh(III) complexes CpCo(IMes)Me(2) and Cp*Rh(IMes)Me(2) were prepared by methylation of [CpCo(IMes)I](+)[I(3)(-)], and ligand exchange at Cp*Rh(Me(2)SO)Me(2), respectively. The molecular structures of CpCo(IMes)(CO), CpRh(IMes)(C(2)H(4)), Cp*Rh(IMes)(C(2)H(4)), and Cp*Rh(IMes)Me(2) were determined by single crystal X-ray diffraction. Steric and electronic factors imposed by the strongly donating and sterically demanding IMes ligand are discussed on the basis of X-ray crystallographic, NMR, and IR spectroscopic analyses. Very poor correlations are found between values for (1)J(Rh-C(carbene)) and dRh-C(carbene) data for Rh(i) N,N-heterocyclic carbene complexes including literature data and this work.  相似文献   

18.
The transition metal acyl compounds [Co(L)(CO)3(COMe)] (L = PMe3, PPhMe2, P(4-Me-C6H4)3, PPh3 and P(4-F-C6H4)3), [Mn(CO)5(COMe)] and [Mo(PPh3)(eta(5)-C5H5)(CO)2(COMe)] react with B(C6F5)3 to form the adducts [Co(L)(CO)3(C{OB(C6F5)3}Me)] (L = PMe3, 1, PPhMe2, 2, P(4-Me-C6H4)3, 3, PPh3, 4, P(4-F-C6H4)3), 5, [Mn(CO)5(C{OB(C6F5)3}Me)] 6 and [Mo(eta(5)-C5H5)(PPh3)(CO)2(C{OB(C6F5)3}Me)], 7. Addition of B(C6F5)3 to a cooled solution of [Mo(eta(5)-C5H5)(CO)3(Me)], under an atmosphere of CO gave [Mo(eta(5)-C5H5)(CO)3(C{OB(C6F5)3}Me)] 8. In the presence of adventitious water, the compound [Co{HOB(C6F5)3}2{OP(4-F-C6H4)3}2] 9, was formed from [Co(P(4-F-C6H4)3)(CO)3(C{OB(C6F5)3}Me)]. The compounds 4 and 9 have been structurally characterised. The use of B(C6F5)3 as a catalyst for the CO-induced migratory-insertion reaction in the transition metal alkyl compounds [Co(PPh3)(CO)3(Me)], [Mn(CO)5(Me)], [Mo(eta(5)-C5H5)(CO)3(Me)] and [Fe(eta(5)-C5H5)(CO)2(Me)] has been investigated.  相似文献   

19.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

20.
The reactions of [[M(mu-OMe)(cod)](2)] (M = Rh, Ir; cod = 1,5- cyclooctadiene) with p-tolylamine, alpha-naphthylamine, and p-nitroaniline gave complexes with mixed-bridging ligands, [[M(cod)](2)(mu-NHAr)(mu-OMe)]. Similarly, the related complexes [[Rh(cod)](2)(mu-NHAr)(mu-OH)] were prepared from the reactions of [[Rh(mu-OH)(cod)](2)] with p-tolylamine, alpha-naphthylamine, and p-nitroaniline. The reactions of [[Rh(mu-OR)(cod)](2)] (R = H, Me) with o-nitroaniline gave the mononuclear complex [Rh(o-NO(2)C(6)H(4)NH)(cod)]. The syntheses of the amido complexes involve a proton exchange reaction from the amines to the methoxo or hydroxo ligands and the coordination of the amide ligand. These reactions were found to be reversible for the dinuclear complexes. The structure of [[Rh(cod)](2)(mu-NH[p-NO(2)C(6)H(4)])(mu-OMe)] shows two edge-shared square-planar rhodium centers folded at the edge with an anti configuration of the bridging ligands. The complex [[Rh(cod)](2)(mu-NH[alpha-naphthyl])(mu-OH)] cocrystallizes with [[Rh(mu-OH)(cod)](2)] and THF, forming a supramolecular aggregate supported by five hydrogen bridges in the solid state. In the mononuclear [Rh(o-NO(2)C(6)H(4)NH)(cod)] complex the o-nitroamido ligand chelates the rhodium center through the amido nitrogen and an oxygen of the nitro group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号