首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
Abstract— The hematoporphyrin-sensitized production of singlet molecular oxygen, O2(1Δg), has been investigated in methanol and in aqueous solution. The quantum yield for formation of O2(1Δg) (ΦΔ) has been measured by both steady-state (oxygen consumption) and time-resolved (near-infrared luminescence) methods. In methanol, both techniques indicate that ΦΔ= 0.76 and the value remains independent of sensitizer concentration over a wide range. This finding is consistent with the dye persisting in a monomelic form in methanol solution. In contrast, ΦΔ decreases markedly with increasing sensitizer concentration in water due to dimerization of the dye. Analysis of the steady-state data indicates ΦΔ values of 0.74 and 0.12, respectively, for monomer and dimer. It is further shown that the efficiency whereby quenching of the triplet state by O2 results in generation of O2(1Δg) is substantially lower for the dimer than for the corresponding monomer. Because monomer and dimer possess quite different absorption spectral profiles, the efficacy for photodynamic action with hematoporphyrin exhibits a pronounced wavelength dependence.  相似文献   

2.
Time-resolved, low-temperature resonance Raman spectra of triplet states of the carotenoids specifically present in bacterial reaction centers in a strained cis conformation have been obtained, thus demonstrating the possibility of studying intermediate transient states of these structures using resonance Raman spectroscopy. Resonance Raman spectra of triplet cis spheroidene and cis methoxyneurosporene present in reaction centers of Rhodopseudomonas spheroides, (strains 2.4.1. and Ga, respectively) exhibit marked differences with those of triplet, all- trans carotenoids previously studied in vitro. These differences, together with the frequency shifts measured for the v 1 modes, indicate that triplet carotenoids bound to reaction centers retain a cis conformation, and that probably no isomerization occurs to all- trans carotenoids upon T ← S0 excitation. Pi electron distributions along the polyene backbone are probably less regular in the triplet state than in the singlet ground state, although probably not to the extent suggested by previous theoretical calculations. The apparently anomalous behaviour of the v 2 bands of all- trans carotenoids upon T ← S0 excitation is shown to result largely from the actual complexity of this region of the Raman spectra, together with a weak participation of the v c—–c internal coordinate in the corresponding modes. Finally, the Raman scattering efficiency of triplet spheroidene bound to reaction centers is lower than that of the singlet, ground state form, under equivalent excitation conditions.  相似文献   

3.
Abstract— Several porphyrin esters used as models for polystyrene-bound porphyrins have been prepared and their excited states have been studied by laser flash photolysis, IR phosphorescence of singlet molecular oxygen, O2(1Δg), and steady-state fluorescence. The photophysical properties of the porphyrin esters in solution are affected by the presence of nitro group(s) in the chain. In this case, an important decrease in φf, φT and φδ (to ca 0.7–0.4 of the value for the parent dimethyl ester) is observed. This is mainly due to intramolecular electron-transfer quenching [by the nitro group(s)] of the first excited singlet state of the porphyrin. The thermodynamic feasibility of this deactivation pathway has been confirmed polarographically. Quenching of the porphyrin triplet state and of O2(1Δg) by the nitro groups is negligible. The present conclusions explain also the results obtained previously for the photooxidation of bilirubin sensitized by the parent insoluble polystyrene-bound porphyrins. In that case the photooxidation rates were correlated directly with the quantum yield of O2(1Δg) production by the sensitizer. The consequences of these results for the use of polystyrene-bound porphyrins in sensitized photooxidation processes are discussed.  相似文献   

4.
Abstract— The mechanism for photodegradation of the ultraviolet photostabilizer 2-(2'-hydroxy-5'-methylphenyl)benzotriazole (TIN P) upon direct and dye-sensitized (singlet molecular oxygen [O2(1Δg)]-mediated) irradiation was studied. From the experimental TIN P photodegradation rate data, and low temperature (77 K) fluorescence and phosphorescence quantum yields, one can conclude that the photodegradative process involves phosphorescent states of TIN P. The open conformer of TIN P quenches O2(1Δg) by physical scavenging with a rate constant (kq) in dimethylsulfoxide of 2.8 times 106 M -1 s-1. The intramolecular hydrogen-bonded conformer does not appreciably interact with O2(1Δg). In the presence of a relatively high concentration of OH- (either 5 times 10-2 M KOH in ethanol or water at pH 13), the ionic form of TIN P (with an ionized phenol group) physically and chemically quenches O2(1Δg). The reaction rate constant ( k r) is 1 times 10 8 M -1 s-1, and the ratio k q/ k r is approximately three in alkaline aqueous media.  相似文献   

5.
ON THE MECHANISM OF QUENCHING OF SINGLET OXYGEN IN SOLUTION   总被引:2,自引:0,他引:2  
Abstract— Bimolecular rate constants for the quenching of singlet oxygen O*2(1Δg), have been obtained for several transition-metal complexes and for β-carotene. Laser photolysis experiments of aerated solutions, in which triplet anthracene is produced and quenched by oxygen, yielding singlet oxygen which then sensitizes absorption due to triplet carotene, firmly establishes diffusion-controlled energy transfer from singlet oxygen as the quenching mechanism in the case of β-carotene. The efficient quenching of singlet oxygen by two trans-planar Schiff-base Ni(II) complexes, which have low-lying triplet ligand-field states, most probably also occurs as a result of electronic energy transfer, since an analogous Pd(II) complex and ferrocene, which both have lowest-lying triplet states at higher energies than the O*2(1Δg), state, quench much less effectively.  相似文献   

6.
Abstract— Experiments are described that enable the kinetic behavior of singlet oxygen, O2(IΔg), to be monitored in the time-resolved mode using a photomultiplier to detect deep orange light (γmax 660 nm). This orange light is a consequence of the upconversion of the natural emission of O2(IΔg) at 1269 nm.  相似文献   

7.
Abstract— From spectroscopic data and rate constants in the literature, equilibrium constants and rates of thermal formation of singlet oxygen (1Δg and 1Σg+) were calculated for a number of conditions. For the gas phase we estimate K eq(1Δg3Σg-) = 1.67 exp(-94.31 KJ/RT) and K eq(1Σg+/3Σg-) = 0.33 exp(-157.0 KJ/RT). The calculated rate constants for the 3Σg+1Δg transition of O2 at 25°C varied from 2.5 × 10-11 s-1 in water to 4.8 × 10-16 s-1 in air, assuming equal solvent interactions with the ground and excited states. Physical quenchers for singlet oxygen are expected to be catalysts for its thermal formation. Equations are presented which allow one to estimate whether such catalysis by quenchers will result in a pro-oxidant effect.  相似文献   

8.
Abstract— A correction is offered to the approximate values previously given by Mendenhall (1978) for the enthalpy of formation and entropy of O2(a1Δg) and O2(b1+) between 298 and 1500 K. Accurate values have been calculated for the functions together with the equilibrium constants for the formation of these species from O2(X3σg-).  相似文献   

9.
Abstract— Laser flash photolysis studies of the production of the triplet state of the xanthene dye, rose bengal (RB), have been carried out. The reactions of this state with oxygen to form singlet oxygen and the superoxide anion radical have been observed and yields measured. Quenching of RB(T1) by oxygen leads to approximately 75% singlet oxygen and 20% superoxide. The reactivity of these species-RB(T1), O2(1Δg) and O2-—with four nucleotides and DNA have been determined. Only guanine residues showed any noticeable reaction at neutral pH. At higher pH guanine rate constants increased. The consequences to biological photodynamic processes are discussed.  相似文献   

10.
Abstract— The possibility of 1O2 (1Δg) participation in the oxidation of polyphenols and quinones has been investigated in two systems: (1) the system involving autooxidation leading to oxidative polymerization and destruction, and (2) the modified Trautz-Schorigin reaction, i.e. oxidation of polyphenols and HCHO with H2O2 in concentrated alkaline solutions. The red band with maximum at 635 nm observed in chemiluminescence of pyrocatechol, adrenaline, pyrogallol, gallic acid, adrenochrome and p -benzoquinone corresponds to the transition 2O2(1Δg) → 2O2(3Σ-g). Emission bands in the range 475–540 nm arise from the superposition of the 2O2(1Δg) → 2O2(3Σ-g) transition and radiative deactivation of excited oxidation products. In system (2) chemiluminescence has a broad band from 580 nm beyond 800 nm and much higher intensity than in system (1). Formaldehyde was found to enhance light emission in system (1) by a factor of about 30. The influence of solvents, including D2O in which 1O2 has varying lifetimes, on kinetics of chemiluminescence as well as quenching effect of β-carotene, hydroquinone, cysteine, bilirubin and biliverdin strongly support the involvement of 1O2 in the chemiluminescence of both systems.  相似文献   

11.
Abstract— Photophysical properties of two chlorin type molecules (CHLI) and (CHLII) were investigated in different solvents. Quantum yields of fluorescence φF of S, → T, intersystem crossing φT, and of singlet oxygen (1Δg) formation φΔ, as well as the Stern-Volmer constants for the quenching of the S, states by oxygen and the bimolecular rate constants of quenching of 1Δg by the chlorins were measured. The values of φT and φΛ can be given as 0.57 and 0.58 for CHLI and 0.69 and 0.58 for CHLII. The values of the fluorescence quantum yields, the strong absorption of the chlorins in the red (Λ > 630 nm) and the high values of the quantum yields for 1Δg formation recommend the chlorin derivatives as potential markers and photosensitizers for tumor therapy.  相似文献   

12.
Abstract— Recent experimental data obtained using the separated sensitizer and substrate method to investigate the interaction of O2(1δg) with various substances has been re-interpreted by means of a more complete theory. Comparison of experimental and recalculated values of the dependence of relative reaction rates on the sensitizer-substrate separation indicate general accord for experiments in which singlet oxygen acceptors in aqueous solution were used. The presumption is therefore that singlet molecular oxygen O2(1δg) is indeed the active oxidizing agent and that the theory presented and experiment are entirely in agreement.
For experiments in which bacterial targets were used a very distinct disagreement between theory and experiment is evident, the conclusion being that the kill rate does not depend linearly on the O2(1δg) concentration in the immediate proximity of the bacteria. However, the data is consistent with a quadratic dependence on the 1δg concentration. A possible conclusion therefore is that the cytotoxic species is actually O2(1σ+g), formed by an energy pooling reaction involving two O2(1δg) molecules.  相似文献   

13.
Abstract— –Pulse radiolysis has been used to excite the triplet states of β-carotene (τ# 9μ sec) and lycopene (τ= 8μsec) in hexane solution, both in the presence and absence of naphthalene as a triplet sensitiser. The absorption spectra of both triplets have been measured in the range 430–550 nm and have thus been extended into the region of the corresponding singlet absorptions. The overlap of the triplet and singlet spectra is discussed in relation to in vivo studies. Extinction coefficients of 1.3±0.1 × 105 l/mole cm for β-carotene triplet 515 nm and 3.9±0.2 × 105 l/mole cm for lycopene triplet at 525 nm were obtained. Isomerisation of the all- trans polyenes used was detected and preliminary measurements indicate that the yield of isomerisation was greater than the triplet yield. The rate of triplet energy transfer from naphthalene to β-carotene was estimated to be 1.5 × 1010 l/mole sec. The corresponding value for lycopene was 1.4× 1010 l/mole sec. The measured efficient quenching of triplet β-carotene by oxygen may occur by an energy transfer mechanism, leading to the formation of singlet oxygen (1Δg. This would suggest that the triplet energy level of β-carotene lies between 121 and 94 kJ mole-1.  相似文献   

14.
ACTIVATED OXYGEN: SINGLET MOLECULAR OXYGEN AND SUPEROXIDE ANION   总被引:1,自引:0,他引:1  
Abstract— Elusive processes associated with molecular oxygen in chemical and biological systems are interpreted in terms of two activated oxygen species, singlet molecular oxygen (1Σ+g/1Δg) and superoxide anion (X2πg). The generation and deactivation of singlet oxygen by interaction with organic triplet states are discussed within a comprehensive theoretical framework. Experimental results indicate the anomalous molecular oxygen enhanced luminescence from organic chromophores in polymer matrices results from the deactivation of singlet (1Δg) oxygen by energy transfer to electronically excited states of the chromophore, and three types of oxygen enhanced luminescence have been identified in these systems. Properties of the superoxide anion relevant to its solution chemistry are briefly discussed. Electron transfer theory is used to theoretically examine the generation of singlet oxygen in disproportionation reactions of the superoxide anion, predicting that, depending on the number of water molecules present, the disproportionation reaction is a proficient source of singlet oxygen. A competing quenching process imposes a limit to the steady state concentration of singlet oxygen in most chemical systems. Available experimental results on the quenching of singlet oxygen by superoxide anion are in good agreement with theoretical results obtained via application of electron transfer theory.  相似文献   

15.
Abstract— The photosensitized oxidation of 10–100 μ M N -acetyl-L-tryptophanamide (NATA) in neutral aqueous solution and in the presence of various dyes proceeds by a pure O2(1Δg)-involving mechanism. Incorporation of the tryptophyl (Trp) residue into the polypeptide chain of human serum albumin (HSA) has no influence on the mechanism and efficiency of Trp photooxidation when sensitized either by methylene blue, a non-binding dye, or by rose bengal, a dye that gives non-covalent 1: 1 complexes with HSA. This is due to the location of the Trp residue in close proximity of the protein surface and, in the case of rose bengal, to the coincidence of the photophysical properties (including the quantum yield of O2(1Δg) generation) for the free and HSA-bound dye. Hematoporphyrin also binds to HSA with 1: 1 stoichiometry, although at a different site from rose bengal. Bound Hp again displays photophysical properties very similar with those of free Hp; however, the efficiency of Trp photo-oxidation in HSA is about 5-fold higher than in NATA owing to a limited rearrangement of the protein structure, induced by Hp binding, which enhances the probability of chemical quenching of O2(1Δg) by the indole ring.  相似文献   

16.
Abstract— The relative reactivity of singlet molecular oxygen, 02(1Δg), α-,β-,Γ-and δ with -tocopherol (vitamin E) was investigated using microwave discharge generation as a uniquely clean source of singlet oxygen and using a hydrocarbon solvent to approximate the membrane environment. The relative efficiencies of the tocopherols for O2(1Δg) were found to decrease in the order: D-α-tocopherol > D-β-tocopheroI > D–Γ-tocopherol > D-δ-tocopherol. The reaction products in all cases were found to be mixtures of quinone and quinone epoxides apparently resulting from decomposition of the primary product, the hydroperoxydienone.  相似文献   

17.
Abstract— The fluoroquinolone antibiotics can induce skin photosensitivity in some patients and this has been ascribed to the generation of reactive oxygen species, such as singlet oxygen (O2[1Δg]). We have studied the photochemical properties of the different ionized forms of the fluoroquinolone norfloxacin upon complexation with Mg2+ and Ca2+ ions, as it is proposed that the antibiotic exists mainly as a complex in the blood plasma. We found that the norfloxacin cation (pH < 6) shows no photodegradation after UVA irradiation and has a low quantum yield of O2(1Δg) generation. The norfloxacin cation does not complex. Ca2+ or Mg2+ ions; when these ions are added to the solution, we observed no changes in the fluorescence quantum yields (φflu) and singlet oxygen yields (φΔ). In contrast, the neutral (6 ± pH > 8.5) and anionic (pH > 9) forms of norfloxacin are able to complex calcium and magnesium, and their generation of O2 (1Δg) is decreased by complexation. The neutral zwitterionic form and the anionic form also quench singlet oxygen by both chemical and physical pathways regardless of complex formation, while physical quenching is observed for the cation. At pH > 7.4, norfloxacin photobleaches and complexation to Ca2+ and Mg2+ increases the rate at which photobleaching occurs. Thus, both the pH of the medium and complexation with metal cations may affect the phototoxic potential of this antibiotic.  相似文献   

18.
Kinetic and mechanistic aspects of the vitamin B2 (riboflavin [Rf])-sensitized photo-oxidation of the imidazoline derivates (IDs) naphazoline (NPZ) and tetrahydrozoline (THZ) were investigated in aqueous solution. The process appears as important on biomedical grounds, considering that the vitamin is endogenously present in humans, and IDs are active components of ocular medicaments of topical application. Under aerobic visible light irradiation, a complex picture of competitive interactions between sensitizer, substrates and dissolved oxygen takes place: the singlet and triplet (3Rf*) excited states of Rf are quenched by the IDs: with IDs concentrations ca.  5.0 m m and 0.02 m m Rf, 3Rf* is quenched by IDs, in a competitive fashion with dissolved ground state oxygen. Additionally, the reactive oxygen species: O2(1Δg), O2•−, HO and H2O2, generated from 3Rf* and Rf •−, were detected with the employment of time-resolved methods or specific scavengers. Oxygen uptake experiments indicate that, for NPZ, only H2O2 was involved in the photo-oxidation. In the case of THZ, O2•−, HO and H2O2 were detected, whereas only HO was unambiguously identified as THZ oxidative agents. Upon direct UV light irradiation NPZ and THZ generate O2(1Δg.), with quantum yields of 0.2 (literature value, employed as a reference) and 0.08, respectively, in acetonitrile.  相似文献   

19.
Abstract— The photo-oxidation by O2(1Δg) of individual lipid components in egg yolk lecithin is examined as a function of time. The rate of oxidation is correlated with the degree of unsaturation in the fatty-acid chains.  相似文献   

20.
Abstract— Zn(II)phthalocyanine (ZnPc) generates O2(1Δg) with a quantum yield of ca. 0.4 upon photocxcitation at 354 or 600 nm in ethanolic solution as determined by time-resolved phosphorescence studies at 1270 nm and photooxidation experiments using 1,3-diphenylisobenzofuran (DPBF) as substrate. The quantum yield of photooxidation slightly increases upon incorporation of ZnPc into unilamellar liposomes of dipalmitoylphosphatidylcholine. Under our irradiation conditions (600 nm, 18°C, and short light exposure times), DPBF(5–50 μM) undergoes photooxidation by a pure Type II mechanism; the rate constant for the O2(1Δg) + DPBF reaction is (1.1 ±0.1) x 109 M-1 s_1 in ethanol solution and determined to be about two orders of magnitude smaller when both ZnPc and DPBF are embedded into liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号