首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Here we report on the temperature dependence of the anomalous behaviour of water in terms of (i) its growth in tetrahedral structures, (ii) instantaneous spatial correlations from small angle x-ray scattering (SAXS) data, (iii) estimates of thermodynamic response functions of isothermal compressibility and (iv) thermal expansion coefficient. Water’s thermal expansion coefficient is estimated for the first time at supercooled conditions from liquid water’s structure factor. We used previously published data from classical force-fields of TIP4P/2005 and iAMOEBA to compare experimental data with molecular dynamics simulations and observe that these force-fields underestimate water’s anomalous behaviour but perform better upon increasing pressure. We demonstrate that the molecular dynamics simulations can describe better the temperature dependent anomalous behaviour of ambient pressure water if simulated at 1?kbar. The deviation in anomalous fluctuations in the simulations is not restricted to ≈228?K but extends all the way to ambient temperatures.  相似文献   

2.
Water shows anomalies different from most of other materials.Different sceniaros have been proposed to explain water anomalies,among which the liquid-liquid phase transition(LLPT)is the most discussed one.It attributes water anomalies to the existence of a hypothesized liquid-liquid critical point(LLCP)buried deep in the supercooled region.We briefly review the recent experimental and theoretical progresses on the study of the LLPT in water.These studies include the discussion on the existence of the first order LLPT in supercooled water and the detection of liquid-liquid critical point.Simulational results of different water models for LLPT and the experimental evidence in confined water are also discussed.  相似文献   

3.
This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale environments. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.  相似文献   

4.
ABSTRACT

Recent computational studies have reported evidence of a metastable liquid–liquid phase transition (LLPT) in molecular models of water under deeply supercooled conditions. A competing hypothesis suggests, however, that non-equilibrium artefacts associated with coarsening of the stable crystal phase have been mistaken for an LLPT in these models. Such artefacts are posited to arise due to a separation of time scales in which density fluctuations in the supercooled liquid relax orders of magnitude faster than those associated with bond-orientational order. Here, we use molecular simulation to investigate the relaxation of density and bond-orientational fluctuations in three molecular models of water (ST2, TIP5P and TIP4P/2005) in the vicinity of their reported LLPT. For each model, we find that density is the slowly relaxing variable under such conditions. We also observe similar behaviour in the coarse-grained mW model of water. Our findings, therefore, challenge the key physical assumption underlying the competing hypothesis.  相似文献   

5.
Molecular dynamics (MD) simulations were performed of the structural changes occurring through the liquid–glass transition in Cu–Zr alloys. The total scattering functions (TSF), and their associated primary diffuse scattering peak positions (K p), heights (K h) and full-widths at half maximum (K FWHM) were used as metrics to compare the simulations to high-energy X-ray scattering data. The residuals of difference between the model and experimental TSFs are ~0.03 for the liquids and about 0.07 for the glasses. Over the compositional range studied, Zr1? x Cu x (0.1 ≤ x ≤ 0.9), K p, K h and K FWHM show a strong dependence on composition and temperature. The simulation and experimental data correlate well between each other. MD simulation revealed that the Cu–Zr bonds undergo the largest changes during cooling of the liquid, whereas the Cu–Cu bonds change the least. Changes in the partial-pair correlations are more readily seen in the second and third shells. The Voronoi polyhedra (VP) in glasses are dominated by only a few select types that are compositionally dependent. The relative concentrations of the dominant VPs rapidly change in their relative proportion in the deeply undercooled liquid. The experimentally determined region of best glass formability, x Cu ~ 65%, shows the largest temperature dependent changes for the deeply undercooled liquid in the MD simulation. This region also exhibits very strong temperature dependence for the diffusivity and the total energy of the system. These data point to a strong topological change in the best glass-forming alloys and a concurrent change in the VP chemistry in the deeply undercooled liquid.  相似文献   

6.
Water, the most common and important liquid, has peculiar properties like the density maximum at 4 °C. Such properties are thought to stem from complex changes in the bonding-network structure of water molecules. And yet we cannot understand water. The discovery of the high-density amorphous ice (HDA) in 1984 and the discovery of the apparently discontinuous change in volume of amorphous ice in 1985 indicated experimentally clearly the existence of two kinds of disordered structure (polyamorphism) in a one-component condensed-matter system. This fact has changed our viewpoint concerning water and provided a basis for a new explanation; when cooled under pressure, water would separate into two liquids. The peculiar properties of water would be explained by the existence of the separation point: the liquid-liquid critical point (LLCP). Presently, accumulating evidences support this hypothesis. Here, I describe the process of my experimental studies from the discovery of HDA to the search for LLCP together with my thoughts which induced these experiments.  相似文献   

7.
We present molecular dynamics simulations of liquid water at normal and supercooled conditions. Autocorrelation functions (ACFs) of several structural quantities and their fourier transforms are obtained and analysed. Structural correlations and relaxation times increase linearly with degree of supercooling. Power spectra of ACFs show increase in librational motion of liquid water with cooling. These modes intensify with supercooling because of structuring and ordering of water molecules. Overall, liquid water structure is homogenous over the temperatures and pressures studied and undergoes fluctuation–dissipation in its local-density variations [English and Tse, Phys. Rev. Lett. 106, 037801 (2011)].  相似文献   

8.
Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time scales involved in the motion and the geometry of motion can be studied using QENS. Molecular dynamics (MD) simulation not only provides insight into the details of the different types of motion possible but also does not suffer limitations of the experimental set-up. Here we report the effect of confinement on molecular dynamics in various restricted geometries as studied by QENS and MD simulations. An example where the QENS technique provided direct evidence of phase transition associated with change in the dynamical behaviour of the molecules is also discussed.   相似文献   

9.
We find, by means of a deep inelastic neutron scattering experiment, a significant excess of proton mean kinetic energy E_(k) in supercooled water, compared with that measured in stable liquid and solid phases. The measured values of E_(k) at moderate degrees of supercooling do not fit the predicted linear increase with temperature observed for the water stable phases. This anomalous behavior is confirmed by the shape of the measured momentum distribution, thus supporting a likely occurrence of ground-state quantum delocalization of a proton between the O atoms of two neighboring molecules. These results strongly suggest a transition from a single-well to a double-well potential felt by the delocalized proton, with a reduced first neighbor O-O distance, in the supercooled state, as compared to ambient condition.  相似文献   

10.
We propose that the dynamics of supercooled liquids and the formation of glasses can be understood from the existence of a zero-temperature dynamical critical point. To support our proposal, we derive a dynamic field theory for a generic kinetically constrained model, which we expect to describe the dynamics of a supercooled liquid. We study this field theory using the renormalization group (RG). Its long time behavior is dominated by a zero-temperature critical point, which for d>2 belongs to the directed percolation universality class. Molecular dynamics simulations seem to confirm the existence of dynamic scaling behavior consistent with the RG predictions.  相似文献   

11.
José Teixeira 《Pramana》2008,71(4):761-768
The dynamics of liquid water is evaluated by the coherent quasi-elastic scattering at two different momentum transfers, in order to discriminate hydrogen bond lifetime from molecular dynamics. The results indicate a possible issue for the puzzle of the behaviour of supercooled water.   相似文献   

12.
We discuss the hydrodynamic equations which describe the shear dynamics of a liquid composed of anisotropic molecules, both in its normal and its supercooled phases. We use these equations to analyze 90 depolarized light scattering experiments performed in the supercooled phase of a glass forming liquid, metatoluidine, and show that the information extracted from this analysis is consistent with independent shear viscosity measurements performed on that liquid in the same temperature range. Received 28 April 1998  相似文献   

13.
In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter ~ 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid–liquid transition of supercooled confined water) on a “wet” sample with hydration h ~ 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually “dry” sample at h ~ 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid–liquid transition hypothesis.  相似文献   

14.
Atomic mechanism of glass formation in supercooled monatomic liquids is monitored via analyzing the spatial arrangement of solid-like atoms. The supercooled states are obtained by cooling from the melt using molecular dynamics (MD) simulation. Solid-like atoms, detected via Lindemann-like freezing criterion, are found throughout the liquid. Their number increases with decreasing temperature and they form clusters. In the deeply supercooled region, all solid-like atoms form a single percolation cluster which spans throughout the system. The number of atoms in this cluster increases steeply with further cooling. Glass formation in supercooled liquids occurs when a single percolation cluster of solid-like atoms involves the majority of atoms in the system to form a relatively rigid glassy solid. By analyzing the temperature dependence of static and dynamic properties, we identify three characteristic temperatures of glass formation in supercooled liquids including the Vogel–Fulcher temperature.  相似文献   

15.
Summary The dynamics of water molecules occupying very small volumes can be probed by incoherent quasi-elastic neutron scattering. We summarise some results obtained with wet samples of porous silica and hydrated proteins. The movements of the molecules in the vicinity of the substrate are extremely reduced as compared to those of bulk water at the same temperature. Almost only rotational movements subsist and the local diffusion is of the order of that observed in deeply supercooled water. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

16.
By means of Monte Carlo simulations in the isothermal-isobaric ensemble, we investigate the structure and phase behaviour of a thermotropic liquid crystal composed of matchbox-symmetric (or board-like) molecules. Besides the isotropic phase the liquid crystal exhibits also uniaxial and biaxial nematic phases. The interaction potential is derived through an expansion in terms of Stone's rotational invariants [A. J. Stone, Mol. Phys. 78, 241–256 (1978).] that can be reexpressed in terms of Cartesian tensors. This latter formulation is particularly well suited for computer simulations. We analyse the orientation distribution function which allows us to distinguish between intrinsic and extrinsic biaxiality. In addition, we study the orientation-dependent correlation functions. In the limit of large intermolecular separations, the value of the orientation correlation function corresponds to the uniaxial and biaxial order parameters which are coupled in a complex fashion.  相似文献   

17.
In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules can accumulate at the interface and form one of two states according to the ratio of gas molecules number to square of graphite surface from our simulation results: gas films (pancake-like) for a larger ratio and nanobubbles for a smaller ratio. In addition, we discuss the stabilities of nanobubbles at different environment temperatures. Surprisingly, it is found that the density of both kinds of gas states can be greatly increased, even comparable with that of the liquid N2 and liquid H2. The present results are expected to be helpful for the understanding of the stable existence of gas film (pancake-like) and nanobubbles.  相似文献   

18.
We present an extensive set of isothermal-isobaric first-principles molecular-dynamics simulations of liquid silicon over a temperature range of 950-1700 K. We find that the tetrahedral order gradually grows upon cooling to approximately 1200 K, but that the growth accelerates significantly below approximately 1200 K. This growth process gives rise to anomalous changes in density and liquid structure upon supercooling. In particular, we find that the atomic coordination number remains constant to approximately 1200 K and then begins to decrease below approximately 1200 K, which resolves the existing controversy regarding liquid structure in the supercooled regime [T. H. Kim, Phys. Rev. Lett. 95, 085501 (2005)10.1103/PhysRevLett.95.085501].  相似文献   

19.
We analyze a set of high-resolution inelastic x-ray scattering (IXS) spectra from H2O measured at T=259, 273, and 294 K using two different phenomenological models. Model I, called the "dynamic cage model," combines the short time in-cage dynamics described by a generalized Enskog kinetic theory with a long-time cage relaxation dynamics described by an alpha relaxation. This model is appropriate for supercooled water where the cage effect is dominant and the existence of an alpha relaxation is evident from molecular-dynamics (MD) simulation data of extended simple point charge (SPC/E) model water. Model II is essentially a generalized hydrodynamic theory called the "three effective eigenmode theory" by de Schepper et al. 11. This model is appropriate for normal liquid water where the cage effect is less prominent and there is no evidence of the alpha relaxation from the MD data. We use the model I to analyze IXS data at T=259 K (supercooled water). We successfully extract the Debye-Waller factor, the cage relaxation time from the long-time dynamics, and the dispersion relation of high-frequency sound from the short time dynamics. We then use the model II to analyze IXS data at all three temperatures, from which we are able to extract the relaxation rate of the central mode and the damping of the sound mode as well as the dispersion relation for the high-frequency sound. It turns out that the dispersion relations extracted from the two models at their respective temperatures agree with each other giving the high-frequency sound speed of 2900+/-300 m/s. This is to be compared with a slightly higher value reported previously, 3200+/-320 m/s, by analyzing similar IXS data with a phenomenological-damped harmonic oscillator model 22. This latter model has traditionally been used exclusively for the analysis of inelastic scattering spectra of water. The k-dependent sound damping and central mode relaxation rate extracted from our model analyses are compared with the known values in the hydrodynamic limit.  相似文献   

20.
Molecular reorientational motion has been studied in a dilute solution of linear ‘tracer’ molecules in a solvent that exhibits liquid, plastic and crystalline phases. Molecular dynamics simulations have been used to extract reorientational correlation functions for both solvent and solute species as functions of temperature in all phases. The transition from the liquid to the plastic phase (upon cooling) results in less hindered tracer rotation, as evidenced by the more rapid decay of orientational correlation. These surprising dynamics are interpreted in terms of structural changes at freezing that lead to a less confining local tracer environment. The findings support a recent experimental result obtained from polarized Raman scattering on a solution of CS2 tracers in a cyclohexane host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号