首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexes of the type [M(gssdh)]Cl and [M(gspdh)]Cl, where M?=?Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), Hgssdh?=?glyoxal salicylaldehyde succinic acid dihydrazone and Hgspdh?=?glyoxal salicylaldehyde phthalic acid dihydrazone, have been synthesized and characterized by elemental analyses, molar conductance, magnetic moments, electronic, ESR and IR spectra and X-ray powder diffraction studies. The metal complexes are insoluble in common organic solvents and are 1?:?1 electrolytes. The magnetic moment values and electronic spectra indicate a spin–free octahedral geometry for all Co(II), Ni(II) and Cu(II) complexes. ESR spectral parameters of Cu(II) complexes suggest an elongated tetragonally–distorted octahedral stereochemistry around copper. Both ligands are monobasic hexadentate ligands coordinating through three >C=O, two >C=N– and a deprotonated phenolate group to the metal. X-ray powder diffraction parameters for three of the complexes correspond to an orthorhombic crystal lattice. The complexes show appreciable activity against various fungi and bacteria.  相似文献   

2.
Complexes of diacetyl salicylaldehyde oxalic acid dihydrazone, CH3COC(CH3)= NNHCOCONHN=CHC6H4(OH),(dsodh) and diacetyl salicylaldehyde malonic acid dihydrazone CH3COC(CH3)=NNHCOCH2CONHN=CHC6H4(OH), (dsmdh) of general compositions [M(L)]Cl, [M′(L)Cl], [M(L′)]Cl and [M′(L′)Cl] (where M?=?Co(II), Cu(II), Zn(II), Cd(II) and M′?=?Ni(II); HL?=?dsodh and HL′?=?dsmdh) were prepared and characterized by elemental analyses, molar conductance, magnetic moments, electronic, ESR and infrared spectra and X-ray diffraction data. The magnetic moments and electronic spectra indicate six-coordinate octahedral geometry for Co(II) and square planar geometry for Ni(II) complexes. The ESR spectral data of Cu(II) complexes in DMF solution reveal a tetragonally distorted octahedral geometry. Both ligands bond through >C=O, >C=N and deprotonated phenolate groups in all octahedral complexes and through >C=N and deprotonated phenolate groups in Ni(II) square planar complexes. The lattice parameters for Cu(dsodh) and Co(dsmdh) correspond to an orthorhombic and Ni(dsodh) corresponds to a tetragonal crystal lattice.

The complexes show significant antifungal activity against a number of pathogenic fungi viz. Stemphylium, Myrothecium and Alternaria. The antibacterial activity was studied against Pseudomonas fluorescence (gram ?ve) and Clostridium thermocellum (gram +ve).  相似文献   

3.
Complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with diacetyl benzaldehyde oxalic acid dihydrazone (dbodh), CH3COC(CH3)=NNHCOCONHN=CHC6H5 and diacetyl benzaldehyde malonic acid dihydrazone (dbmdh), CH3COC(CH3)=NNHCOCH2CONHN=CHC6H5 of general composition [M(dbodh)Cl]Cl and [M(dbmdh)Cl]Cl were synthesized and characterized by microanalyses, molar conductance, magnetic susceptibility, UV–Vis, ESR and IR spectra and X-ray diffraction studies. The complexes are 1 : 1 electrolytes in DMF and are insoluble in water and common organic solvents. The dbodh and dbmdh are neutral tridentate ligands in most complexes and coordinate via one >C=O and two >C=N–groups. In Cu(II) complexes the ligands are pentadentate coordinating through three >C=O and two >C=N–groups. The magnetic moment values and UV–Vis spectra suggest square-planar geometry for Co(II) and Ni(II) complexes and distorted octahedron for both Cu(II) complexes. The ESR spectra of Cu(II) complexes show well-defined copper hyperfine lines in DMSO solution at 120 K and exhibit d x 2 ?y 2 as the ground state. The X-ray diffraction parameters for [Ni(dbodh)Cl]Cl and [Co(dbmdh)Cl]Cl correspond to a tetragonal crystal lattice. The complexes show significant antifungal activity against Alternaria sp., Curvularia sp. and Colletotrichum sp. and fair antibacterial activity against Bacillus subtilis and Pseudomonas fluorescence.  相似文献   

4.
Abstract  Acetone [N-(3-hydroxy-2-naphthoyl)] hydrazone (H2AHNH) has been prepared and its structure confirmed by elemental analysis and 1H NMR spectroscopy. It has been used to produce diverse complexes with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and U(VI)O2 ions. The complexes obtained have been investigated by thermal analysis, spectral studies (1H NMR, IR, UV–visible, ESR), and magnetic measurements. IR spectra suggest that H2AHNH acts as a bidentate ligand. The electronic spectra of the complexes and their magnetic moments provide information about geometries. The ESR spectra give evidence for the proposed structure and the bonding for some Cu(II) complexes. Thermal decomposition of the Ni(II) and Cu(II) complexes afforded metal oxides as final products. Kinetic data were obtained for each stage of thermal degradation of some of the complexes using the Coats–Redfern method. The formation of complexes in solution was studied pH-metrically and the order of their stability constants (log K) was found to be U(VI)O2 > Cu(II) > Zn(II) > Ni(II) > Cd(II) > Co(II). Antimicrobial and eukaryotic DNA studies were carried out. Graphical abstract     相似文献   

5.
The ligand 1,4-dibenzoyl-3-thiosemicarbazide (DBtsc) forms complexes [M(DBtsc-H)(SCN)] [M = Mn(II), Co(II) or Zn(II)], [M(DBtsc-H) (SCN)(H2O)] [M = Ni(II) or Cu(II)], [M(DBtsc-H)Cl] [M = Co(II), Ni(II), Cu(II) or Zn(II)] and [Mn(DBtsc)Cl2], which have been characterized by elemental analyses, magnetic susceptibility measurements, UV/Vis, IR,1H and13C NMR and FAB mass spectral data. Room temperature ESR spectra of the Mn(II) and Cu(II) complexes yield <g> values, characteristic of tetrahedral and square planar complexes respectively. DBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.  相似文献   

6.
Complexes of the type [M(pash)Cl] and [M(Hpash)(H2O)SO4] (M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpash = p-amino acetophenone salicyloyl hydrazone) have been synthesized and characterized by elemental analyses, molar electrical conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies and X-ray powder diffraction. All the complexes are insoluble in common organic solvents and are non-electrolytes. The magnetic moment values and electronic spectra indicate a square-planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and spin-free octahedral geometry for the sulfato complexes. The ligand coordinates through >C=N–,–NH2 and a deprotonated enolate group in all the chloro complexes, and through >C=N–, >C=O and–NH2 in the sulfato complexes. Thermal analyses (TGA and DTA) of [Cu(pash)Cl] show a multi-step exothermic decomposition pattern. ESR spectral parameters of Cu(II) complexes in solid state at room temperature suggest the presence of the unpaired electron in d x 2 ? y 2 . X-ray powder diffraction parameters for [Cu(pash)Cl] and [Ni(Hpash)(H2O)SO4] correspond to tetragonal and orthorhombic crystal lattices, respectively. The complexes show a fair degree of antifungal activity against Aspergillus sp., Stemphylium sp. and Trichoderma sp. and moderate antibacterial activity against E. coli and Clostridium sp.  相似文献   

7.
8.
[M(CO)4(N—N)] reacts with CuCl to give new heterobimetallic metal carbonyls of the type [M(CO)4(N—N)(CuCl)], M = W, Mo; N—N = 2,2-bipyridine (bipy), 1,10-phenanthroline (phen). Reactions of [M(CO)4(N—N)(CuCl)] with NaSCN produced the series of complexes of general formula [M(CO)4(N—N)(CuSCN)]. The i.r. spectral of all the bimetallic carbonyls exhibited the general four (CO) band patterns of the precursors. The u.v.–vis. spectral data for precursors and products showed bands associated with * (nitrogen ligands), dd (intrametal), as well as MLCT d* (nitrogen ligands) and MLCT d *(CO) transitions. The [M(CO)4(N—N)(CuX)] (X = Cl, SCN) emission spectra showed only one band associated with the MLCT transition. The t.g. curves revealed a stepwise loss of CO groups. The initial decomposition temperatures of the [M(CO)4(N—N)(CuX)] series suggest that the bimetallic compounds are indeed thermally less stable than their precursors, and the X-ray data showed the formation of MO3, CuMO4, Cu2O and CuO as final decomposition products, M = W, Mo. The spectroscopic data suggests that the heterobimetallic compounds are polymeric.  相似文献   

9.
The kinetics of substitution of aqua ligands fromcis-diaqua-bis(biguanide)cobalt(III) and chromium(III) ions by aspartic acid in EtOH–H2O media have been studied spectrophotometrically in the 30 to 45°C range. We propose the following rate law for the anation
  相似文献   

10.
Although salens and imidazoles are well-studied motifs among bioactive and therapeutic agents, their properties when combined in transition metal complexes are not well developed. To explore the structure/reactivity of this class of compounds, a salen-based ligand, namely (2,2′-{1,2-ethanediylbis[nitrilo(E)methylylidene]}diphenol, S), and its binary (MS) and ternary (MSI) complexes (I = imidazole; M = Co (II), Ni (II), Cu (II), Cd (II), Al (III), and La (III)) have been synthesized and fully characterized by standard physicochemical and theoretical methods. Evidence from structural analysis tools along with DFT modeling revealed an unusual monobasic tridentate salen binding mode, involving the phenolic oxygen, the nitrogen of the azomethine group, and NH group formed via phenol-to-cyclohexadienone tautomerization, giving rise to a general molecular formula of MSI complexes as [M(S)(I)2(Cl)] for M (II) = Co, Ni, Cu and Cd or [M(S)(I)(Cl)2] for M (III) = Al and La, respectively. The antimicrobial activities of S, MS, and MSI were screened against several bacterial and fungal strains. Of all tested complexes, CdS and CuSI were the most effective antimicrobials, giving larger inhibition zones than the reference antibiotics. The antimicrobial efficacy for the MS complexes follows the order: CdS > gentamicin > CuS > NiS > CoS > LaS > AlS > S, whereas MSI complex, potencies are ordered as CuSI > gentamicin > CdSI >NiSI > CoSI > LaSI > AlSI > S. In vitro cytotoxicity screening of MSI complexes disclosed that both CuSI and CdSI exhibited higher activity against human liver (Hep-G2) and breast (MDA-MB231) carcinoma cell lines than the reference (cisplatin) drug. The satisfactory bioactivities observed for several of these compounds supports the underlying design idea for combining important bioactive motifs for possible therapeutic benefit.  相似文献   

11.
Synthesis and characterization of two types of novel organomercury derivatives of 3-methylpyrazoline-5-one (MepzH2-one), (XHg)2(MepzH-one) (X = Cl, Br) and Hg(MepzH-one)2 are described. The 1H and 13C NMR data revealed existence of dimercurated compounds in the dimethylsulfoxide-d 6 solution. NMR spectra confirmed that the mercuration took place at the C-4 atom of the pyrazole ring. X-ray crystal structure analysis of 4,4-bis(chloromercurio)-3-methylpyrazoline-5-one revealed almost linear coordination of both mercury atoms [Hg–C 2.099(6) and 2.104(5) ; Hg–Cl 2.330(2) and 2.338(2) ; C–Hg–Cl 171.1(2) and 174.4(2)°]. The slight deviation from linearity is caused by contacts with nitrogen or oxygen atoms from the neighbouring molecule [HgN 2.768(5) and HgO 2.748(5) ]. The molecules are interconnected by hydrogen bonds N–HCl of 3.286(5) .  相似文献   

12.
A new series of Pd(II) macrocyclic complexes have been synthesized by template condensation of bis(benzil)4-chloro 1,2-phenylenediamine (ML1) and bis(benzil)4-fluro 1,2-phenylenediamine (ML2) respectively, with appropriate diamine i.e. 1,2-phenylenediamine, 4-chloro 1,2-phenylenediamine and 4-fluro 1,2-phenylenediamine in the presence of PdCl2 to form complexes of the type [Pd(C40H26N4ClF)]Cl2, [Pd(C40H27N4X)]Cl2 and [Pd(C40H26N4X2)]Cl2, where X=Cl, F. The complexes have been characterized with the help of elemental analysis, IR, 1H NMR, electronic spectra, conductance measurement, magnetic susceptibility, cyclic voltammetry and X-ray powder diffraction studies. On the basis of these studies a square planar geometry has been proposed around the metal ion. The newly synthesized ligands and their complexes have been screened for antimicrobial and pesticidal activities. The results obtained from bioassays indicate that this class of compounds can be utilized for the design of new substance with pesticidal activity and promising antimicrobial activity.  相似文献   

13.
A novel hexadentate nitrogen donor [N6] macrocyclic ligand viz, 1,5,11,15,21,22-hexaaza-2,14-dimethyl-l4,12-diphenyltricyclo[15.3.1.I(7–11)]docosane[1,4,6,8,10(22)-11,14,16,18,20(21)]decaene (L), has been synthesised. The Co (II), Ni (II), and Cu (II) complexes with this ligand have been prepared and subjected to elemental analysis, molar conductance, magnetic susceptibility measurements, mass, 1H NMR (ligand), IR, electronic, and ESR spectral studies and electrochemical investigation. On the basis of molar conductance the complexes can be formulated as [M(L)]X2 (where M = Co (II), Ni (II), Cu (II) and X = Cl and NO3) due to their 1: 2 electrolytic nature in DMSO. All the complexes are of the high-spin type and are six-coordinated. On the basis of IR, electronic, and ESR spectral studies, an octahedral geometry has been assigned for the Co(II) and Ni(II) complexes, whereas a tetragonal geometry for the Cu(II) complexes was found. Antimicrobial activity of L and its complexes as growth inhibiting agents have been screened in vitro against two species (F. moniliformae and R. solani) of plant pathogenic fungi. The text was submitted by the authors in English.  相似文献   

14.

Ligand bridged polymeric complexes of the type [M(apainh)(H2O)X] where, M=Mn(II), Co(II), Ni(II), Cu(II), and Zn(II); X=Cl2 or SO4; apainh=acetone p‐amino acetophenone isonicotinoyl hydrazone have been synthesized and characterized. The complexes are stable solids, insoluble in common organic solvents and are non‐electrolytes. Magnetic moments and electronic spectral studies suggest a spin‐free octahedral geometry for all Mn(II), Co(II), Ni(II), and Cu(II) complexes. IR spectra show tridentate nature of the ligand bonding through two >C?N and a >C?O groups. X‐ray powder diffraction parameters for some of the complexes correspond to orthorhombic and tetragonal crystal lattices. Thermal studies (TGA and DTA) of [Mn(apainh)(H2O)SO4] complex show multi‐step decomposition pattern of both an endothermic and exothermic nature. ESR data of Cu(II) chloride complex in solid state show an axial spectra, whereas, Cu(II) sulfate complex is isotropic in nature. The complexes show a significant antifungal activity against a number of pathogenic fungal species and antibacterial activity against Pseudomonas sp. and Clostridium sp. The metal complexes are more active than the ligand.  相似文献   

15.
Group 10 metal(II) complexes of H2tbu-salen (H2tbu-salen = N,N'-bis(3',5'-di-tert-butylsalicylidene)ethylenediamine) and H2tbu-salcn (H2tbu-salcn = N,N'-bis(3',5'-di-tert-butylsalicylidene)-1,2-cyclohexanediamine) containing two 2,4-di(tert-butyl)phenol moieties, [Ni(tbu-salen)] (1a), [Ni(tbu-salcn)] (1b), [Pd(tbu-salen)] (2a), [Pd(tbu-salcn)] (2b), and [Pt(tbu-salen)] (3), were prepared and structurally characterized by X-ray diffraction, and the electronic structures of their one-electron-oxidized species were established by spectroscopic and electrochemical methods. All the complexes have a mononuclear structure with two phenolate oxygens coordinated in a very similar square-planar geometry. These complexes exhibited similar absorption spectra in CH2Cl2, indicating that they all have a similar structure in solution. Cyclic voltammograms of the complexes showed a quasi-reversible redox wave at E1/2 = 0.82-1.05 V (vs Ag/AgCl), corresponding to formation of the relatively stable one-electron-oxidized species. The electrochemically oxidized or Ce(IV)-oxidized species of 1a, 2a, and 3 displayed a first-order decay with a half-life of 83, 20, and 148 min at -20 degrees C, respectively. Ni(II) complexes 1a and 1b were converted to the phenoxyl radicals upon one-electron oxidation in CH2Cl2 above -80 degrees C and to the Ni(III)-phenolate species below -120 degrees C. The temperature-dependent conversion was reversible with the Ni(III)-phenolate ground state and was found to be a valence tautomerism governed by the solvent. One-electron-oxidized 1b was isolated as [Ni(tbu-salcn)]NO3 (4) having the Ni(II)-phenoxyl radical ground state. One-electron-oxidized species of the Pd(II) complexes 2a and 2b were different from those of the Ni(II) complexes, the Pd(II)-phenoxyl radical species being the ground state in CH2Cl2 in the range 5-300 K. The one-electron-oxidized form of 2b, [Pd(tbu-salcn)]NO3 (5), which was isolated as a dark green powder, was found to be a Pd(II)-phenoxyl radical complex. On the other hand, the ESR spectrum of the one-electron-oxidized species of Pt(II) complex 3 exhibited a temperature-independent large g anisotropy in CH2Cl2 below -80 degrees C, while its resonance Raman spectrum at -60 degrees C displayed nu8a of the phenoxyl radical band at 1600 cm-1. These results indicated that the ground state of the Pt(II)-phenoxyl radical species has a large distribution of the radical electron spin at the Pt center. One-electron oxidation of 3 gave [Pt(tbu-salen)]NO3 (6) as a solid, where the oxidation state of the Pt center was determined to be ca. +2.5 from the XPS and XANES measurements.  相似文献   

16.
We present the synthesis and coordination chemistry of a bulky, tripodal N,N,O ligand, ImPh2NNO t Bu ( L ), designed to model the 2-His-1-carboxylate facial triad (2H1C) by means of two imidazole groups and an anionic 2,4-di-tert-butyl-subtituted phenolate. Reacting K-L with MCl2 (M = Fe, Zn) affords the isostructural, tetrahedral non-heme complexes [Fe(L)(Cl)] ( 1 ) and [Zn(L)(Cl)] ( 2 ) in high yield. The tridentate N,N,O ligand coordination observed in their X-ray crystal structures remains intact and well-defined in MeCN and CH2Cl2 solution. Reacting 2 with NaSPh affords a tetrahedral zinc thiolate complex, [Zn(L)(SPh)] ( 4 ), that is relevant to isopenicillin N synthase (IPNS) biomimicry. Cyclic voltammetry studies demonstrate the ligand's redox non-innocence, where phenolate oxidation is the first electrochemical response observed in K-L , 2 and 4 . However, the first electrochemical oxidation in 1 is iron-centred, the assignment of which is supported by DFT calculations. Overall, ImPh2NNO t Bu provides access to well-defined mononuclear, monoligated, N,N,O-bound metal complexes, enabling more accurate structural modelling of the 2H1C to be achieved.  相似文献   

17.
Systematic analysis of the effect of para-substituents (H, Cl, Br and OMe) on the meso-phenyl group in vanadyl meso-tetraphenylporphyrins ([VIVO(TPP)] (R=H, 1 ), [VIVO(TCPP)] (R=Cl, 2 ), [ VIVO(TBPP)] (R=Br, 3 ) and [VIVO(TMPP)] (R=OMe, 4 )) on their properties and catalytic oxygen atom transfer (OAT) for oxidation of benzoin to benzil using DMSO as well as 30 % aqueous H2O2 as the sacrificial oxygen source have been studied. Electrochemical and theoretical (density functional theory) studies are in good agreement with the influence of these substituents on the catalytic property of these complexes. Complex [VIVO(TCPP)] ( 2 ) displayed the best catalytic activity for the conversion (92 %) of benzoin to benzil in 30 h with >99 % product selectivity when DMSO was used as an oxygen source, whereas excellent conversion (~100 %) of benzoin to benzil was noticed in 18 h with 95 % product selectivity when 30 % aqueous H2O2 was used as a source of oxygen. Furthermore, among these complexes, the electron-withdrawing nature of the chloro substituent at the p-position of meso-phenyl group significantly influences the oxygen atom transfer. Experimental and simulated EPR studies confirmed the +4 oxidation of vanadium in these complexes. The structure of 2 , 3 and 4 , confirmed by single crystal X-ray diffraction method, are domed in shape, and the displacement of V(IV) ion from the mean porphyrin plane follows the order: 2 (0.458 Å) < 3 (0.459 Å) < 4 (0.479 Å). We observed that the electron-withdrawing nature of chloro substituent at the p-position of meso-phenyl group influence the oxygen atom transfer from vanadyl porphyrin to dimethyl sulfide much.  相似文献   

18.
New molecular complexes of fullerenes C60 and C70 with tetraphenylporphyrins [M(tpp)] in which M-H2, MnII, CoII, CuII, ZnII and Fe(III)Cl, have been synthesised. Crystal structures of two C60 complexes with H2TPP, which differ only in the number of benzene solvated molecules, and C60 and C70 complexes with [Cu(tpp)] have been studied. The fullerene molecules form a honeycomb motif in H2TPP.2C60. 3C6H6, puckered graphite-like layers in H2TPP.2C60.4C6H6, zigzag chains in [Cu(tpp)].C70.1.5C7H8.0.5C2HCl3 and columns in [Cu(tpp)]2.C60. H2TPP has van der Waals contacts with C60 through nitrogen atoms and phenyl groups. Copper atoms of the [Cu(tpp)] molecules are weakly coordinated with C70, but form no shortened contacts with C60. The formation of molecular complexes with fullerenes affects the ESR spectra of [M(tpp)] (M = Mn, Co and Cu). [Mn(tpp)] in the complex with C70 lowers its spin state from S = 5/2 to S = 1/2, whereas [Co(tpp)] and [Cu(tpp)] change the constants of hyperfine interaction. ESR, IR, UV-visible and X-ray photoelectron spectroscopic data show no noticeable charge transfer from the porphyrinate to the fullerene molecules.  相似文献   

19.
HL and MeL are prepared by condensing benzil dihydrazone with 2-formylpyridine and 2-acetylpyridine, respectively, in 1:2 molar proportions. While in a reaction with [Ru(C(6)H(6))Cl(2)]2, HL yields the cation [Ru(C(6)H(6)){5,6-diphenyl-3-(pyridin-2-yl)-1,2,4-triazine}Cl]+, MeL gives the cation [Ru(C(6)H(6))(MeL)Cl]+. Both the cations are isolated as their hexafluorophosphate salts and characterised by X-ray crystallography. In the case of HL, double domino electrocyclic/elimination reactions are found to occur. The electrocyclic reaction occurs in a C=N-N=C-C=N fragment of HL and the elimination reaction involves breaking of a C-H bond of HL. Density functional calculations on model complexes indicate that the identified electrocyclic reaction is thermochemically as well as kinetically feasible for both HL and MeL in the gas phase. For a double domino reaction, similar to that operative in HL, to occur for MeL, breaking of a C-C bond would be required in the elimination step. Our model calculations show the energy barrier for this elimination step to be much higher (329.1 kJ mol(-1)) for MeL than that for HL (96.3 kJ mol(-1)). Thus, the domino reaction takes place for HL and not for MeL. This accounts for the observed stability of [Ru(C(6)H(6))(MeL)Cl]+ under the reaction conditions employed.  相似文献   

20.
Summary Nickel(II), palladium(II), cobalt(II) and copper(II) complexes of the ligandN,N-1,2-propane-bis(methyl 2-amino-cyclopent-1-ene-dithiocarboxylate) (H2L1),N,N-1,3-propane-bis(methyl 2-aminocyclopent-1-ene-dithiocarboxylate) (H2L2) andN,N-[bis(methyl 2-aminocyclopent-1-ene-dithiocarboxylate)] diethylenetriamine (H2L3) have been synthesised. Both H2L1 and H2L2 form complexes of the type ML, and all but the copper(II) complexes, are square planar. In the copper(II) complexes tetrahedral distortion is significantly more with CuL2. From H2L3 square planar complexes of the type [M(HL3)X] (M=Ni, X=Cl, Br, I or SCN; M=Pd, X=Cl or Br) have been obtained in which the donor unit involved is N2SX. The composition of the cobalt(II) and copper(II) complexes is [M(H2L3)X2] (X=Cl or Br) which contain the chromophore [MN3X2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号