首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work is to provide an in-depth interpretation of the optical and electronic properties of a series of phosphole derivatives, including 2,5-diphenylthiooxophosphole (2a), 2-phenyl-5-biphenylthiooxophosphole (3a), 2-phenyl-5-stilbenylthiooxophosphole (4a), 2,5-dithienylthiooxophosphole (2b), 2-thienyl-5-biphenylthiooxophosphole (3b), 2-thienyl-5-stilbenylthiooxophosphole (4b), and dibenzophosphole 1. These thiooxophospholes show great potential for application in OLEDs as efficient red emitters due to the tuning of the optical and electronic properties by the use of various substituents at the 2,5-positions of the phosphole ring. The geometric and electronic structures of the oligomers in the ground state were investigated using density functional theory (DFT) and the ab initio HF, whereas the lowest singlet excited states were optimized with ab initio CIS. To assign the absorption and emission peaks observed in the experiment, we computed the energies of the lowest singlet excited states with time-dependent DFT (TD-DFT). All DFT calculations were performed using the B3LYP functional and the 6-31G (d) basis set. The results show that the HOMOs, LUMOs, energy gaps, ionization potentials, and electron affinities for the phosphole derivatives are significantly affected by varying the phosphole ring substituents at the 2,5-positions, which favor the hole and electron injection into OLEDs. The absorption and emission spectra exhibit red shifts to some extent [the absorption spectra: 339.63 (1)<358.65 (2a)<373.77 (3a)<443.89 nm (4a) and 403.03 (3b)<449.11 (2b)<460.19 nm (4b); the emission spectra: 418.42 (1)<513.62 (2a)<556.51 (3a)<642.59 nm (4a) and 568.31 (2b)<631.11 (3b)<647.35 nm (4b)] and the Stokes shifts are unexpectedly large ranging from 78 to 228 nm resulting from a more planar conformation of the excited state for the phosphole derivatives.  相似文献   

2.
采用从头算(ab initio)和密度泛函理论(DFT B3LYP)方法, 对配合物8-巯基喹啉锌Zn(tq)2及其5种衍生物基态结构进行优化, 用含时密度泛函理论(TD-DFT/B3LYP)及6-31+G(d)基组计算吸收光谱; 同时用ab initio HF 单激发组态相互作用(CIS)法在6-31G(d)基组上优化其最低激发单重态几何结构, 用含时密度泛函理论计算发射光谱. 结果表明, 电子在基态与激发态间的跃迁, 主要是在配体8-巯基喹啉(tq)环内的电荷转移, 电子从含S的苯硫酚环转移至含N的吡啶环上; 吸收光谱和发射光谱的计算值与实验值基本符合. 该类配合物都是优良的电子传输材料, 改变金属离子和取代基均可以调控发光材料的光谱波段.  相似文献   

3.
The absorption and emission energies for diphenylboron analogs of Alq3 (Ph2Bq) and its methyl substituents (Ph2Bmq) were systematically investigated at the Zerner's intermediate neglect of differential overlap (ZINDO), configuration interaction singles (CIS), and time‐dependent density functional theory (TD‐DFT) levels of theory. The lowest excited‐state geometries were optimized at the ab initio CIS level. The TD‐DFT method provides the most reliable results for the absorption and emission transition energies, compared with other methods. Moreover, the TD‐DFT calculations reliably estimate the changes of absorption and emission λmax values upon methyl substitution, with errors of 1.2% and 1.8%, respectively. The Stokes shifts are well reproduced by TD‐DFT calculations. Various density functional theory methods have been tested and the B3LYP functional clearly seems to be the best choice for this class of compounds. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

4.
5.
10-Methoxy-2-phenylbenzo[h]quinoline (MPBQ) has been synthesized and characterized by NMR and X-ray single crystal diffraction. Both the ground and the lowest singlet excited-state geometries of MPBQ were optimized by B3LYP and ab initio CIS methods at 6-31G (d,p) level, respectively. The absorption and emission spectra of the compound were experimentally determined in CH(3)CN solution and were simultaneously computed using density functional theory (DFT) and time-dependent density functional theory (TDDFT) in CH(3)CN solution. The calculated absorption and emission wavelengths were in good agreement with the experimental ones. The calculated lowest-lying absorption spectra can be mainly attributed to intramolecular charge transfer (ICT). And the calculated fluorescence spectra can be mainly described as originating from an excited state with intramolecular charge transfer (ICT) character. These results show that MPBQ exhibited excellent thermal stability and could serve as a useful photoluminescence material.  相似文献   

6.
7.
The structures of 2,7'-(ethylene)-bis-8-hydroxyquinoline and its derivatives were optimized at the ground states using ab initio HF and B3LYP methods. At the same time, the molecular structures of the first singlet excited state for 2,7'-(ethylene)-bis-8-hydroxyqulnoline and its derivatives were optimized by CIS/6-31G(d). The absorption and emission spectra based on the above structures were obtained by the time-dependent density functional theory (TD-DFT) by the B3LYP method with the 6-31G(d) basis set. The calculated results of luminescence originate from the electronic transition from the hydroxphenol ring of 8-hydroxyquinoline A to the pyridine ring of 8-hydroxyquinoline B. Their luminescence wave bands can be tuned by different substituents on the ligand of 8-hydroxyquinoline.  相似文献   

8.
Bis(2‐methyl‐8‐quinolinolato)aluminum(III) hydroxide complex (AlMq2OH) is used in organic light‐emitting diodes (OLEDs) as an electron transport material and emitting layer. By means of ab initio Hartree–Fock (HF) and density functional theory (DFT) B3LYP methods, the structure of AlMq2OH was optimized. The frontier molecular orbital characteristics and energy levels of AlMq2OH have been analyzed systematically to study the electronic transition mechanism in AlMq2OH. For comparison and calibration, bis(8‐quinolinolato)aluminum(III) hydroxide complex (Alq2OH) has also been examined with these methods using the same basis sets. The lowest singlet excited state (S1) of AlMq2OH has been studied by the singles configuration interaction (CIS) method and time‐dependent DFT (TD‐DFT) using a hybrid functional, B3‐LYP, and the 6‐31G* basis set. The lowest singlet electronic transition (S0 → S1) of AlMq2OH is π → π* electronic transitions and primarily localized on the different quinolate ligands. The emission of AlMq2OH is due to the electron transitions from a phenoxide donor to a pyridyl acceptor from another quinolate ligand including C → C and O → N transference. Two possible electron transfer pathways are presented, one by carbon, oxygen, and nitrogen atoms and the other via metal cation Al3+. The comparison between the CIS‐optimized excited‐state structure with the HF ground‐state structure indicates that the geometric shift is mainly confined to the one quinolate and these changes can be easily understood in terms of the nodal patterns of the highest occupied and lowest unoccupied molecular orbitals. On the basis of the CIS‐optimized structure of the excited state, TD‐B3‐LYP calculations predict an emission wavelength of 499.78 nm. An absorption wavelength at 380.79 nm on the optimized structure of B3LYP/6‐31G* was predicted. They are comparable to AlMq2OH 485 and 390 nm observed experimentally for photoluminescence and UV‐vis absorption spectra of AlMq2OH solid thin film on quartz, respectively. Lending theoretical corroboration to recent experimental observations and supposition, the reasons for the blue‐shift of AlMq2OH were revealed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

9.
The ground state geometries have been computed by using density functional theory (DFT) at B3LYP/6-31G*, B3LYP/6-31G**, and PCM-B3LYP/6-31G* level of theories. The highest occupied molecular orbitals (HOMOs) are delocalized on whole of the molecule and the lowest unoccupied molecular orbitals (LUMOs) are localized on the tricarbonitrile. The lowest HOMO and LUMO energies have been observed for Dye1 while highest for Dye4. The LUMO energies of Dye1–Dye4 are above the conduction band of TiO2 and HOMOs are below the redox couple. The absorption spectra have been computed in solvent (methanol) and without solvent by using time-dependant DFT at TD-B3LYP/6-31G*, TD-B3LYP/6-31G**, and PCM-TD-B3LYP/6-31G* level of theories. The calculated maximum absorption wavelengths of the spectra in methanol are in good agreement with experimental evidences. The maximum absorption wavelengths of new designed sensitizers are red shifted compared to parent molecule. The electronic coupling constant and electron injection have been computed by first principle investigations. The improved electronic coupling constant and electron injection revealed that new modeled systems would be efficient sensitizers.  相似文献   

10.
The structures of 2,7′-(ethylene)-bis-8-hydroxyquinoline and its derivatives were optimized at the ground states using ab initio HF and B3LYP methods. At the same time, the molecular structures of the first singlet excited state for 2,7′-(ethylene)-bis-8-hydroxyquinoline and its derivatives were optimized by CIS/6-31G(d). The absorption and emission spectra based on the above structures were obtained by the time-dependent density functional theory (TD-DFT) by the B3LYP method with the 6-31G(d) basis set. The calculated results of luminescence originate from the electronic transition from the hydroxphenol ring of 8-hydroxyquinoline A to the pyridine ring of 8-hydroxyquinoline B. Their luminescence wave bands can be tuned by different substituents on the ligand of 8-hydroxyquinoline.  相似文献   

11.
用密度泛函理论(DFT)以及B3 LYlP泛函在6-311++G**水平上,对苯并咪唑羧酸(L)及其3种碱土金属配合物ML(M=Mg,Ca,Ba)的基态(S0)结构进行优化,用含时密度泛函理论(TD-DFT)在6-311++G**水平下计算其吸收光谱.用单激发组态相互作用(CIS)法在HF/6-31+G*上优化其最低激发单重态(S1)的几何结构,用ID-DFT B3IYP/6-311++G**计算其发射光谱.结果表明,配体L与M(Ⅱ)结合成ML后,随原子序数的增大(Mg相似文献   

12.
Structural features (orientation of the carboxyl group, ring puckering), electronic absorption, and circular dichroism spectra of 4-alkyl- and 4-aryl-dihydropyrimidones 1-5 are calculated by semiempirical (AM1, INDO/S), ab initio (HF/6-31G, CIS/6-31G, RPA/6-31G), and density functional theory (B3LYP/6-31G) methods. These calculations allow an assignment of the absolute configuration by comparison of simulated and experimental CD spectra. Although the ab initio methods greatly overestimate electronic transition energies, the general appearance of the experimental CD spectra is quite nicely reproduced by these calculations. Thus, comparison of experimental with calculated CD spectra is a reliable tool for the assignment of the absolute configuration. For 4-methyl derivatives 1, the first enantiopure DHPM examples with no additional aromatic substituent, the stereochemistry at C4 provided by the theoretical results is confirmed by X-ray structure determination of the diastereomeric salt 6. Additional support is the consistent HPLC elution order found for all investigated DHPMs on a cellulose-derived chiral stationary phase.  相似文献   

13.
Vibrational absorption and circular dichroism spectra of dextrorotatory, levorotatory, and racemic mixture of tert-butylphenylphosphinothioic acid have been measured in CCl(4) solutions in the 2000-900 cm(-1) region. The conformations for both tautomeric structures of (S)-tert-butylphenylphosphinothioic acid are investigated using the B3LYP functional with the 6-31G* basis set. For the most stable conformation, the absorption and VCD spectra are predicted ab initio using the B3LYP functional with 6-31G*, 6-311G(2d, 2p), 6-31+G, and 6-311G(3df, 3pd) basis sets. A different functional, B3PW91, was also used with the 6-31G* basis set. The predicted spectra are compared to the experimental spectra. The comparison indicates that (-)-tert-butylphenylphosphinothioic acid is of the (S)-configuration and exists in only one tautomeric structure and one conformation in CCl(4) solution.  相似文献   

14.
Fluoranthene and benzo[k]fluoranthene-based oligoarenes are good candidates for organic light-emitting diodes (OLEDs). In this work, the electronic structure and optical properties of fluoranthene, benzo[k]fluoranthene, and their derivatives have been studied using quantum chemical methods. The ground-state structures were optimized using the density functional theory (DFT) methods. The lowest singlet excited state was optimized using time-dependent density functional theory (TD-B3LYP) and configuration interaction singles (CIS) methods. On the basis of ground- and excited-state geometries, the absorption and emission spectra have been calculated using the TD-DFT method with a variety of exchange-correlation functionals. All the calculations were carried out in chloroform medium. The results show that the absorption and emission spectra calculated using the B3LYP functional is in good agreement with the available experimental results. Unlikely, the meta hybrid functionals such as M06HF and M062X underestimate the absorption and emission spectra of all the studied molecules. The calculated absorption and emission wavelength are more or less basis set independent. It has been observed that the substitution of an aromatic ring significantly alters the absorption and emission spectra.  相似文献   

15.
By means of ab initio HF methods, the ground state structures of 8-hydroxyquinoline (8-HQ) monomers and dimers were optimized using the 6-311+g* and 6-31G basis sets, respectively. The lowest singlet excited states of 8-HQ monomers and dimers have been studied by the single-excitation configuration interaction (CIS) approach at the same level. In the studies of the potential energy surface, it was found that all the stable configurations corresponded to enol form. The UV-vis and fluorescence spectra of 8-HQ monomers and dimers under a solvent effect condition were also calculated using the TD-B3LYP/6-31+G* method based on the HF- and CIS-optimized geometries. The computed absorption and fluorescence spectral characteristics for monomers and dimers were in good agreement with previously reported experimental values. The results also show that 8-HQ has very poor fluorescence in solvents.  相似文献   

16.
用密度泛函B3LYP方法对低聚体(DEF-BSeD)n(n=1~4)[其中9,9二乙基芴(DEF)单元与苯并硒化二唑(BSeD)单元的摩尔比分别为1∶1和2∶1]进行全优化, 计算电离能(PI)、电子亲和势(EA)和能隙(ΔH-L), 在基态结构的基础上用TD-DFT和ZINDO方法计算激发能和电子吸收光谱, 并利用外推法得到高聚物的相应性质. 从外推结果看出, 随着聚合物中BSeD比例的增大, 聚合物的最低单激发能呈减小的趋势, 最大电子吸收光谱红移. 用CIS方法优化得到单体的S1激发态结构, 计算结果表明, 激发态的结构更趋近于平面构型.  相似文献   

17.
We have explored the impact of a number of basic simulation parameters on the results of a recently developed hybrid molecular dynamics-quantum mechanics (MD-QM) method (Mercer et al., J Phys Chem B 1999, 103, 7720). The method utilizes MD simulations to explore the ground-state configuration space of the system and QM evaluation of those structures to yield the time-dependent electronic transition energy, which is transformed into the optical line-broadening function using the second-order cumulant expansion. Both linear and nonlinear optical spectra can then be generated for comparison to experiment. The dependence of the resulting spectra on the length of the MD trajectory, the QM sampling rate, and the QM model chemistry have all been examined. In particular, for the system of oxazine-4 in methanol studied here, at least 20 ps of MD trajectory are needed for qualitative convergence of linear spectral properties, and >100 ps is needed for quantitative convergence. Surprisingly, little difference is found between the 3-21G and 6-31G(d) basis sets, and the CIS and TD-B3LYP methods yield remarkably similar spectra. The semiempirical INDO/s method yields the most accurate results, reproducing the experimental Stokes shift to within 5% and the FWHM to within 20%. Nonlinear 3-pulse photon echo peak shift (3PEPS) decays have also been simulated. Decays are generally poorly reproduced, though the initial peak shift which depends on the overall coupling of motions to the solute transition energy is within 15% of experiment for all model chemistries other than those using the STO-3G basis.  相似文献   

18.
The ground state (S(0)) and the lowest singlet excited state (S(1)) of a newly synthesized red fluorescent material, 2-[3-(2-{4-[(2-Hydroxy-ethyl)-methyl-amino]-phenyl}-vinyl)-5,5-dimethyl-cyclohex-2-enylidene]-malononitrile (A31), are investigated. The S(0) and S(1) geometries are optimized at the ab initio Hartree-Fock and the singles configuration interaction (CIS) levels of theory, respectively. The CIS and semiempirical Zerner's Intermediate Neglect of Differential Overlap (ZINDO) methods provide the results for the absorption (S(0)-->S(1)) and emission (S(1)-->S(0)) transition energies. The Stokes shifts calculated at the CIS and ZINDO levels of theory are obtained. The absorption spectra in various solvents are calculated using the time-dependent density-functional theory method in combination with the polarized continuum model, which are in very good agreement with our experimental measurements. The solvent effects are discussed.  相似文献   

19.
郭佳  赵清岚 《化学研究》2010,21(6):82-84,90
采用B3LYP/6-31G(d,p)方法优化得到了并三噻吩(DTT)及其三种衍生物苯基并三噻吩(PDTT)、萘基并三噻吩(TDTT)和噻吩基并三噻吩(NDTT)基态(S0)的稳定几何构型,并通过频率分析加以验证.在TD-B3LYP/cc-pVTZ水平下,计算了它们的电子吸收光谱,计算值与实验值符合得很好.计算结果表明:它们的吸收波长顺序为λNDTTλTDTTλPDTTλDTT.采用TD-B3LYP/6-31G(d,p)方法,优化得到了TDTT和NDTT第一激发态(S1)的几何结构,并在TD-B3LYP/cc-pVTZ水平下计算了它们的发射光谱.  相似文献   

20.
The electronic and geometrical properties of distyrylbenzene (DSB) are investigated by using chemistry theoretical calculation methods. Specifically, the excited state properties are studied by performing ab initio correlation interaction singlet (CIS) and time‐dependent density functional theory; the ground state and Raman activities are computed by density functional theory with the B3LYP method. Eight conformers of distyrylbenzene are found and they are derived from three isomers which are cis, cis‐, cis, trans‐, and trans, trans‐, respectively. The relative energy shows that each isomer of three types is separated with a large energy barrier, but a small energy difference of each conformer is found if they are in the same type. The transition state also shows the barrier between conformers is lower than isomers. The computed excited transition energies using ZINDO/S based on the optimized geometries at a DFT/B3LYP level with 6–31+G show an excellent agreement with experimental absorption spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号