首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four novel chiral 22-crown-6 ethers 6a-b, 7a-b bearing hydroxyl side groups derived from rosin acid and BINOL were prepared in optically pure forms, and their enantiodiscriminating abilities towards protonated primary amines and amino acid methyl ester salts were examined by UV-vis titration methods. These receptors exhibited good chiral recognition towards the isomers (up to KD/KL = 6.02, ΔΔG0 = 4.45 kJ mol−1) and showed different complementarity to various chiral guests.  相似文献   

2.
Three types of new chiral BINOL ligands (2, 3 and 4) bearing dendritic wedges have been synthesized through coupling reaction between 3-hydroxymethyl-2,2′-bis(methoxymethyl)-1,1′-binaphthol (7), 6,6′-dihydroxymethyl-2,2′-bis(methoxymethyl)-1,1′-binaphthol (12), 6-hydroxymethyl-2,2′-bis(methoxymethyl)-1,1′-binaphthol (15) and Fréchet-type polyether dendritic benzyl bromide, followed by deprotection of methoxymethyl groups by iPrOH/HCl, respectively. These new ligands obtained were assessed in enantioselective Lewis acid-catalyzed addition of diethylzinc to benzaldehyde. Compared to the enantioselectivity observed with dendrimer 1 bearing the dendritic wedges at 3,3′-positions of the binaphthyl backbone, higher enantioselectivity for all these ligands was observed. Difference in the effect of linking positions and generations on enantioselectivity and/or activity for all three kinds of dendritic ligand-derived catalysts was observed. Among these dendritic ligands, (R)-3/Ti(IV) catalyst with the dendritic wedges at 6,6′-positions of BINOL gave the highest enantioselectivity (up to 87% ee).  相似文献   

3.
Ying-Chuan Qin 《Tetrahedron》2006,62(40):9335-9348
Efficient one-step syntheses of the bifunctional BINOL and H8BINOL ligands (S)-6 and (S)-8 have been developed from the reaction of BINOL and H8BINOL with morpholinomethanol, respectively. The X-ray analyses of these compounds have revealed their structural similarity and difference. The bifunctional H8BINOL (S)-8 is found to be highly enantioselective for the reaction of diphenylzinc with many aliphatic and aromatic aldehydes and especially is the most enantioselective catalyst for linear aliphatic aldehydes. Unlike other catalysts developed for the diphenylzinc addition which often require the addition of a significant amount of diethylzinc with cooling (or heating) the reaction mixture in order to achieve high enantioselectivity, using (S)-8 needs no additive and gives excellent results at room temperature. (S)-8 in combination with diethylzinc and Ti(OiPr)4 can catalyze the highly enantioselective phenylacetylene addition to aromatic aldehydes. It can also promote the phenylacetylene addition to acetophenone at room temperature though the enantioselectivity is not very high yet. Without using Ti(OiPr)4 and a Lewis base additive, (S)-8 in combination with diethylzinc can catalyze the reaction of methyl propiolate with an aldehyde to form the highly functional γ-hydroxy-α,β-acetylenic esters except that the enantioselectivity is low at this stage. The bifunctional BINOL ligand (S)-6 in combination with Me2AlCl is found to be a highly enantioselective catalyst for the addition of TMSCN to both aromatic and aliphatic aldehydes.  相似文献   

4.
Novel unsymmetrical salan fluorescent sensors 2a and 2b have been designed and synthesized. The chiral recognition of N-Boc-protected amino acids by 2a and 2b has been investigated. Sensor 2a possesses higher sensitivity and enantioselectivity than sensor 2b does. Job analysis and nonlinear regression results show that 2a can form a 1:1 stoichiometric complex with a N-Boc-protected amino acid. The obtained response selectivities and the association constants indicate that 2a is a highly enantioselective and sensitive fluorescent sensor toward N-Boc-protected amino acids.  相似文献   

5.
Candida antarctica lipase-catalyzed hydrolysis of O-butyryl-BINOL [(±)-3] or O-butyryl-6,6′-dibromo-BINOL [(±)-5] yielded optically active BINOL [(R)-1] or 6,6′-dibromo-BINOL [(R)-4] with high enantiomeric excess at 80 °C. Reaction temperature and acyl group of substrate had a great influence on the reactivity and enantioselectivity, respectively, of lipase-catalyzed hydrolysis for chiral binaphthol synthesis.  相似文献   

6.
Achiral 1-benzoyl-3-methylperhydropyrimidin-4-one (1) was deemed a useful, potential precursor for the enantioselective synthesis of α-substituted β-amino acids. Pyrimidinone 1 was prepared from inexpensive β-aminopropanoic acid in 62% overall yield. Prochiral enolate derivative 1 -Li was alkylated in good yield and moderate enantioselectivity in the presence of chiral amines (S)-8, (S,S)-9, (S,S)-10, or (−)-sparteine. The enantioselectivity of the alkylation process is highest in toluene as the solvent and in the presence of lithium bromide as additive. The racemic alkylated derivatives 2 and 3 were readily metallated with LDA to give prochiral enolates 2-Li and 3-Li, that were reprotonated with novel chiral phenolic acids (S)-11, (S,S)-12, (S)-13, and (S,S)-14 in moderate enantioselectivity in the case of 2-Li and good enantioselectivity in the case of 3-Li. The acid (6N HCl) hydrolysis of enantioenriched 2 and 3 proceeded in good yield and without racemization to afford α-alkyl-β-amino acids 4 and 5, respectively.  相似文献   

7.
A novel imidazolium cyclophane S-1, which displays a high selectivity for the recognition toward fluoride ion, has been constructed by using BINOL as scaffold. The fluoride ion induced remarkable red shift both in absorption and emission spectra, which might allow S-1 to be employed as a ratiometric receptor with dual-channel. The chiral recognitions of S-1 with chiral carboxylates were also examined.  相似文献   

8.
Attempts directed toward the stereocontroled total synthesis of piperidine and indolizidine alkaloids resulted in the synthesis of (−)-β-conhydrine 1 and (−)-lentiginosine 3. The synthesis of 1 and 3 were developed from protected d-mannitol as the chiral precursor, which involved nucleophilic addition and azide nucleophilic substitution, Barbier allylation, ring closing metathesis, and Sharpless asymmetric dihydroxylation as the key steps.  相似文献   

9.
Jing Lin 《Tetrahedron》2004,60(49):11277-11281
Benzylaminomethyl groups are introduced to the 3,3′-positions of BINOL. The resulting compounds can be used to conduct the enantioselective fluorescent recognition of mandelic acid and N-benzyloxycarbonylphenylglycine. In the presence of (S)-mandelic acid, compound (R)-2 showed over 30-fold fluorescence enhancement with the ef [ef=enantiomeric fluorescence difference ratio=(ISI0)/(IRI0)] up to 4.2. In the presence of d-N-benzyloxycarbonylphenylglycine, compound (RR)-4 showed up to 15-fold fluorescence enhancement with the ef up to 5.0. These high fluorescence sensitivity and enantioselectivity make compounds (R)-2 and (RR)-4 practically useful sensors for the recognition of the chiral acids in apolar solvents.  相似文献   

10.
Linglin Wu 《Tetrahedron》2008,64(11):2651-2657
A chiral polymer ligand was synthesized by the polymerization of (S)-5,5′-dibromo-6,6′-dibutyl-2,2′-binaphthol (S-M-1) with (S)-2,2′-bishexyloxy-1,1′-binaphthyl-6,6′-boronic acid (S-M-2) via Pd-catalyzed Suzuki reaction. The application of the chiral polymer ligand to the asymmetric addition of phenylethynyl zinc to various aldehydes has been studied. The results show that the soluble chiral polybinaphthols ligand in combination with Et2Zn and Ti(OiPr)4 can exhibit excellent enantioselectivity for phenylacetylene addition to both aromatic and aliphatic aldehydes. The catalytically active center of the repeating unit S-1 used as a catalyst produced the opposite configuration of the propargylic alcohols to that of S-1, on the contrary, the chiral polymer gave the same configuration as the optically active binaphthol moiety of the polybinaphthols ligand. Moreover, the chiral polymer ligand can be easily recovered and reused without loss of catalytic activity as well as enantioselectivity.  相似文献   

11.
Novel chiral 22-crown-6 ethers (5ab) bearing methoxycarbonyl side groups derived from rosin acid and 2,2′-dihydroxy-1,1′-binaphthyl (BINOL) were prepared in optically pure forms, and their enantiodiscriminating abilities toward protonated primary amines and amino acid methyl ester salts were examined by the UV–vis titration method. These receptors exhibit good chiral recognition towards the isomers (up to KL/KD?=?5.23, ΔΔG0?=?4.10?kJ?mol?1) in CHCl3:MeOH?=?2:1 at 25?°C.  相似文献   

12.
Treatment of the functionalized Schiff base ligands with boronic esters 1a, 1b, 1c and 1d with palladium (II) acetate in toluene gave the polynuclear cyclometallated complexes 2a, 2b, 2c and 2d, respectively, as air-stable solids, with the ligand as a terdentate [C,N,O] moiety after deprotonation of the -OH group. Reaction of 1j with palladium (II) acetate in toluene gave the dinuclear cyclometallated complex 5j. Reaction of the cyclometallated complexes with triphenylphosphine gave the mononuclear species 3a, 3b, 3c, 3d and 6j with cleavage of the polynuclear structure. Treatment of 2c with the diphosphine Ph2PC5H4FeC5H4PPh2 (dppf) in 1:2 molar ratio gave the dinuclear cyclometallated complex 4c as an air-stable solid.Deprotection of the boronic ester can be easily achieved; thus, by stirring the cyclometallated complex 3a in a mixture of acetone/water, 3e is obtained in good yield. Reaction of the tetrameric complex 2a with cis-1,2-cyclopentanediol in chloroform gave complex 2c after a transesterification reaction. Under similar conditions complexes 3a and 3d behaved similarly: with cis-1,2-cyclopentanediol, pinacol or diethanolamine complexes 3c, 3b, 3g and 3f, were obtained. The pinacol derivatives 3b and 3g experiment the Petasis reaction with glyoxylic acid and morpholine in dichloromethane to give complexes 3h, and 3i, respectively.  相似文献   

13.
The enantioselective addition of allylstannanes and allylsilanes to alkyl glyoxylates of type 1, catalyzed by chiral (salen)Cr(III) complexes 3, has been studied. We have found that the reaction proceeded smoothly for low loading (1-2 mol %) of (1R,2R)-(salen)Cr(III)BF43a or (1R,2R)-(salen)Cr(III)ClO43c, and allyltributyltin under simple, undemanding conditions, affording (R)-2-hydroxypent-4-enoic acid esters 2 in good yield (61-90%) and enantioselectivity (58-76% ee).  相似文献   

14.
The enantioselective alkynylation of aldimines with terminal acetylenes catalyzed by chiral Cu(I) complexes with (R)-2,2′-di(2-aminoaryloxy)-1,1′-binaphthyl ligands (7) was examined. Chiral C2-symmetric N,N-ligands 7, which have primary aniline moieties, were readily prepared from inexpensive (R)-1,1′-binaphthol (BINOL) as a chiral source. In particular, the reaction of N-benzylidenebenzeneamine 1a with phenylacetylene 2a proceeded smoothly in the presence of 5 mol % of (CuOTf)2·C6H5CH3 and 10 mol % of (R)-7d at room temperature for 24 h, and the corresponding propargylamine 3a was obtained with up to 82% ee.  相似文献   

15.
Xi Chen  Li Wang  De-Shun Huang 《Tetrahedron》2010,66(11):1990-5500
A novel C1 symmetric BINOL-terpyridine ligand (R)-5 is synthesized. This ligand in combination with ZnEt2 and Ti(OiPr)4 is found to catalyze the highly enantioselective reaction (up to 98% ee) of methyl propiolate with a variety of aromatic aldehydes at 0 °C to give the synthetically useful γ-hydroxy-α,β-acetylenic esters. In comparison with the previously reported BINOL system, the use of (R)-5 requires a reduced amount of the chiral ligand without the addition of a Lewis base. It shows higher enantioselectivity for a number of substrates.  相似文献   

16.
Tomomi Ikemoto 《Tetrahedron》2005,61(21):5043-5048
The sulfide 4 was treated with chiral acid in a mixture of toluene and methyl iso-butylketone to precipitate the salt, which reacted with 30% H2O2 for 3 weeks at rt. The resulting crystals were collected followed by recrystallization to give the salt of enantiometrically pure sulfoxide and chiral acid 7 in 72% yield and 98.1% de, which was led to chiral sulfoxide S-3 after neutralization. Sulfoxide S-3 was led to S-1a as the candidate for an orally active HIV-1 therapeutic agent.  相似文献   

17.
The neutral complexes [Rh(I)(NBD)((1S)-10-camphorsulfonate)] (2) and [Rh(I)((R)-N-acetylphenylalanate)] (4) reacted with bis-(diphenylphosphino)ethane (dppe) to form the cationic Rh(I)(NBD)(dppe) complexes, 5 and 6, respectively, accompanied by their corresponding chiral counteranions. Analogously, 4 reacted with 4,4-dimethylbipyridine to yield complex 7. Complexes 5 and 6 disproportionated in aprotic solvents to form the corresponding bis-diphosphine complexes 8 and 9, respectively. 8 was characterized by an X-ray crystal structure analysis. In order to form achiral Rh(I) complexes bearing chiral countercations new sulfonated monophosphines 13-16 with chiral ammonium cations were synthesized. Tris-triphenylphosphinosulfonic acid (H3TPPS, 11) was used to protonate chiral amines to yield chiral ammonium phosphines 14-16. Thallium-tris-triphenylphosphinosulfonate (Tl3TPPS, 12) underwent metathesis with a chiral quartenary ammonium iodide to yield the proton free chiral ammonium phosphine 13. Phosphines 15 and 16 reacted with [Rh(NBD)2]BF4 to afford the highly charged chiral zwitterionic complexes [Rh(NBD)(TPPS)2][(R)-N,N-dimethyl-1-(naphtyl)ethylammonium]5 (17) and [Rh(NBD)(TPPS)2][BF4][(R)-N,N-dimethyl-phenethylammonium]6 (18), respectively. Complexes 5, 6, and 18 were tested as precatalysts for the hydrogenation of de-hydro-N-acetylphenylalanine (19) and methyl-(Z)-(α)-acetoamidocinnamate (MAC, 20) under homogeneous and heterogeneous (silica-supported and self-supported) conditions. None of the reactions was enantioselective.  相似文献   

18.
A series of chiral C1- and C2-symmetric ferrocenyl Schiff bases (1a-c), ferrocenyl aminoalcohols (2a), ferrocenylphosphinamides (2b-c), 1,1′-ferrocenyl-diol (3), and 1,1′-ferrocenyl-disulfonamide (4) were prepared and employed as base catalysts or as ligand for titanium(IV) complexes in the asymmetric addition of diethylzinc to aromatic aldehydes. High enantioselectivity up to almost 100% ee was achieved for the alkylation of benzaldehyde and p-methoxybenzaldehyde with 1 or 3. In contrast, however, the β-aminoalcohol (2a) and phosphinamides (2b and c) that are ubiquitous classes of base catalysts for this reaction proved inefficient in our hands, regardless of the types of substrates or reaction conditions. Comparative studies show that there exist various reaction parameters governing not only chemical yields but also optical yields. These include steric and electronic environment of the substrate, the solvent, the reaction temperature, and the nature of the ferrocene moieties.  相似文献   

19.
A chiral fluorescent receptor 1 based on cholic acid was designed and synthesized. The enantioselective recognition ability of 1 to mandelate anion was studied by the fluorescence in CH3CN and a 1H NMR spectroscopic method. The results indicate that 1 exhibited a good enantioselectivity to the enantiomer of the mandelate anion in CH3CN.  相似文献   

20.
The nucleophilic conjugate addition of chiral formaldehyde N,N-dialkylhydrazones 1 to doubly activated cyclic alkenes 2-8 proceeds smoothly to afford the corresponding Michael adducts 14, 16, 18, 20, 22, 24, and 25 in variable yields and selectivities. The reactions take place either spontaneously or in the presence of MgI2 as a mild Lewis acid depending on the type of substrate. Release of the chiral auxiliary was achieved by transformation of the hydrazone moiety into acetals, dithioacetals or nitriles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号