首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rate constants for the gas phase reactions of O3 and OH radicals with 1,3-cycloheptadiene, 1,3,5-cycloheptatriene, and cis- and trans-1,3,5-hexatriene and also of O3 with cis-2,trans-4-hexadiene and trans -2,trans -4-hexadiene have been determined at 294 ± 2 K. The rate constants determined for reaction with O3 were (in cm3 molecule-1s?1 units): 1,3-cycloheptadiene, (1.56 ± 0.21) × 10-16; 1,3,5-cycloheptatriene, (5.39 ± 0.78) × 10?17; 1,3,5-hexatriene, (2.62 ± 0.34) × 10?17; cis?2,trans-4-hexadiene, (3.14 ± 0.34) × 10?16; and trans ?2, trans -4-hexadiene, (3.74 ± 0.61) × 10?16; with the cis- and trans-1,3,5-hexatriene isomers reacting with essentially identical rate constants. The rate constants determined for reaction with OH radicals were (in cm3 molecule?1 s?1 units): 1,3-cycloheptadiene, (1.31 ± 0.04) × 10?10; 1,3,5-cycloheptatriene, (9.12 × 0.23) × 10?11; cis-1,3,5-hexatriene, (1.04 ± 0.07) × 10?10; and trans 1,3,5-hexatriene, (1.04 ± 0.17) × 10?10. These data, which are the first reported values for these di- and tri-alkenes, are discussed in the context of previously determined O3 and OH radical rate constants for alkenes and cycloalkenes.  相似文献   

2.
The 308 nm excimer laser flash photolysis of 2-naphthyldiazomethane produces triplet 2-naphthylcarbene (λmax = 362 nm) which decays with the observed pseudo-first-order rate constants (kexptl) of 5.54 ± 0.03 × 106; 3.33 ± 0.4 × 106; 1.64±0.02 × 107; and 3.05±0.4 × 106 s-1 in n-pentane, 2,2,4-trimethylpentane (2,2,4-TMP), benzene and Freon 113 respectively. In hydrocarbon solvents the observed decay of triplet 2-naphthylcarbene is correlated with the pseudo-first-order growth of the 2-naphthylmethyl radical (λmax = 378 nm). Direct kinetic measurements of the reaction of triplet 2-naphthylcarbene in 2,2,4-TMP with cyclohexane, styrene, methanol and carbon tetrachloride yielded bimolecular quenching rate constants of 1.48 ± 0.04 × 106;4.33 ± 0.1 × 107;7.25 ± 0.5 × 106; and 3.35 ± 0.07 × 106M-1S-1. It is also found that 2-naphthylcarbene reacts with acetonitrile (kq = 5.28 ± 0.1 × 105 M-1 s-1) to form a nitrile ylide intermediate with a λmax = 372 nm. These results are interpreted in terms of a rapid singlet-triplet 2-naphthylcarbene equilibrium.  相似文献   

3.
We measured isomeric-yield ratios for the 197Au(γ,n)196m,gAu reactions with bremsstrahlung energies of 50-, 60-, 70- MeV, and 2.5-GeV at the two different electron linac of the Pohang accelerator laboratory by using the activation method. The photons were produced when a pulsed electron beam hit a thin tungsten target. The well-known photoactivation method was used and hence the induced activities in the irradiated foils were measured with the high-resolution γ-ray spectrometric system consisting of lithium drifted high-purity Germanium detector and a multichannel analyzer. The measured isomeric-yield ratios for the 197Au(γ,n)196m,gAu reactions were (4.95 ± 0.51) × 10?4, (5.72 ± 0.72) × 10?4, (6.03 ± 0.50) × 10?4, and (9.27 ± 0.83) × 10?4 for 50-, 60-, 70-MeV, and 2.5-GeV bremsstrahlung energies, respectively. The present results measured with the bremsstrahlung energy higher than 60-MeV are the first measurement.  相似文献   

4.
Laser-induced time-resolved phosphorescence has been used to evaluate the quenching of gaseous biacetyl (3Au) molecules by various molecules at 25°C. The quenching of biacetyl (3Au) molecules by biacetyl itself was not detectable under our experimental conditions, and a pressure-independent lifetime of 1.70 ± 0.08 msec was found. The bimolecular rate constants (units of l/mol·sec) for quenching of the 3Au molecules by cis-2-pentene, trans-2-pentene, cis-1,3-pentadiene, trans-1,3-pentadiene, and oxygen were found to be (3.3 ± 1.9) × 103, (4.0 ± 0.2) × 104, (3.9 ± 0.1) × 108, (1.3 ± 0.1) × 108, and (5.2 ± 0.4) × 108, respectively.  相似文献   

5.
Rate constants for the gas-phase reactions of the four oxygenated biogenic organic compounds cis-3-hexen-1-ol, cis-3-hexenylacetate, trans-2-hexenal, and linalool with OH radicals, NO3 radicals, and O3 have been determined at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained were (in cm3 molecule?1 s?1 units): cis-3-hexen-1-ol: (1.08 ± 0.22) × 10?10 for reaction with the OH radical; (2.72 ± 0.83) × 10?13 for reaction with the NO3 radical; and (6.4 ± 1.7) × 10?17 for reaction with O3; cis-3-hexenylacetate: (7.84 ± 1.64) × 10?11 for reaction with the OH radical; (2.46 ± 0.75) × 10?13 for reaction with the NO3 radical; and (5.4 ± 1.4) × 10?17 for reaction with O3; trans-2-hexenal: (4.41 ± 0.94) × 10?11 for reaction with the OH radical; (1.21 ± 0.44) × 10?14 for reaction with the NO3 radical; and (2.0 ± 1.0) × 10?18 for reaction with O3; and linalool: (1.59 ± 0.40) × 10?10 for reaction with the OH radical; (1.12 ± 0.40) × 10?11 for reaction with the NO3 radical; and (4.3 ± 1.6) × 10?16 for reaction with O3. Combining these rate constants with estimated ambient tropospheric concentrations of OH radicals, NO3 radicals, and O3 results in calculated tropospheric lifetimes of these oxygenated organic compounds of a few hours. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Rate constants have been determined at 296 ± 2 K for the gas phase reaction of NO3 radicals with a series of aromatics using a relative rate technique. The rate constants obtained (in cm3 molecule?1 s?1 units) were: benzene, <2.3 × 10?17; toluene, (1.8 ± 1.0) × 10?17; o? xylene, (1.1 ± 0.5) × 10?16; m? xylene, (7.1 ± 3.4) × 10?17; p? xylene, (1.4 ± 0.6) × 10?16; 1,2,3-trimethylbenzene, (5,6 ± 2.6) × 10?16; 1,2,4-trimethylbenzene (5.4 - 2.5) × 10?16; 1,3,5-trimethylbenzene, (2.4 ± 1.1) × 10?16; phenol, (2.1 ± 0.5) × 10?12; methoxybenzene, (5.0 ± 2.8) × 10?17; o-cresol, (1.20 ± 0.34) × 10?11; m-cresol, (9.2 ± 2.4) × 10?12; p-cresol, (1.27 ± 0.36) × 10?11; and benzaldehyde, (1.13 ± 0.25) × 10?15. These kinetic data, together with, in the case of phenol, product data, suggest that these reactions proceed via H-atom abstraction from the substituent groups. The magnitude of the rate constants for the hydroxy-substituted aromatics indicates that the nighttime reaction of NO3 radicals with these aromatics can be an important loss process for both NO3 radicals and these organics, as well as being a possible source of nitric acid, a key component of acid deposition.  相似文献   

7.
A simplified design of thermal lens apparatus is presented in which a chopped cw argon laser beam produces a transient thermal lens in a cylindrical gas cell. The axial intensity variation of a cw helium-neon laser probing this lens is analysed to yield the thermal diffusivities and thus the thermal conductivity coefficients of Kr, CO2, CH4, C2H6, C3H8, C3H6 and C4H10 as 9.4 × 10?3 ± 4%, 1.6 × 10?2 ± 3%, 2.98 × 10?2 ± 4%, 2.03 × 10?2 ± 4%, 2.05 × 10?2 ± 7%, 1.6 × 10?2 ± 8% and 1.9 × 10?2 ± 8% respectively in W m?1 K?1 at 300 K. The method is rapid, requiring only that the sample be transparent at both laser frequencies used. A simplified mathematical analysis is shown to be adequate for this system. For the conditions specified, self-lensing of the argon laser beam is shown to be compensated by using an effective laser beam diameter.  相似文献   

8.
The relative OH reaction rates from the simulated atmospheric oxidation of 4-methyl-2-pentanone, trans-4-octene, and trans-2-heptene have been measured. Reactions were carried out at 297 ± 2 K in 100-liter FEP Teflon®-film bags. The OH radicals were produced from the photolysis of methyl nitrite. The measured rate constants (×1011 cm3 molecule?1 s?1) were as follows: 6.77 ± 0.50 for trans-4-octene, 1.40 ± 0.07 for 4-methyl-2-pentanone, and 6.70 ± 0.23 for trans-2-heptene using an absolute rate constant of 2.63 × 1011 cm3 molecule?1 s?1 for the reaction of OH with propene; the principal reference organic. © John Wiley & Sons, Inc.  相似文献   

9.
用液相反应-前驱物烧结法制备了Cr2(WO4)3和Cr2(MoO4)3粉体。298~1 073 K的原位粉末X射线衍射数据表明Cr2(WO4)3和Cr2(MoO4)3的晶胞体积随温度的升高而增大, 本征线热膨胀系数分别为(1.274±0.003)×10-6 K-1和(1.612±0.003)×10-6 K-1。用热膨胀仪研究了Cr2(WO4)3和Cr2(MoO4)3在静态空气中298~1 073 K范围内热膨胀行为,即开始表现为正热膨胀,随后在相转变点达到最大值,最后表现为负热膨胀,其负热膨胀系数分别为(-7.033±0.014)×10-6 K-1和(-9.282±0.019)×10-6 K-1。  相似文献   

10.
Using the technique of molecular modulation spectrometry, we have measured directly the rate constants of several reactions involved in the oxidation of methyl radicals at room temperature: k1 is in the fall-off pressure regime at our experimental pressures (20–760 torr) where the order lies between second and third and we obtain an estimate for the second-orderlimit of (1.2 ± 0.6) × 10?12 cm3/molec · sec, together with third-order rate constants of (3.1 ± 0.8) × 10?31 cm6/molec2 · sec with N2 as third body and (1.5 ± 0.8) × 10?30 with neopentane; we cannot differentiate between k2a and k2c and we conclude k2a + (k2c) = (3.05 ± 0.8) × 10?13 cm3/molec · sec and k2b = (1.6 ± 0.4) × 10?13 cm3/molec · sec; k3 = (6.0 ± 1.0) × 10?11 cm3/molec · sec.  相似文献   

11.
A kinetic method is described for the enthalpimetric determination of a series of physiologically active alkaloids based on their inhibitory effect on the cholinesterase-catalysed hydrolysis of butyrylcholine iodide. All analyses are done at pH 8.0 and at 25.0°C (short term stability ± 0.002°C). Precision (< 3.0%) data are reported for the determination of physostigmine sulphate (1.0–4.0 × 10-8), quinine sulphate (1.0 × 10-6–4.0 × 10-5), procaine hydrochloride (1.0 × 10-5–× 2.5 × 10-4), atropine sulphate (5.0 × 10-5–3.0 × 10-4), morphine sulphate (1.0–8.0 × 10-4), codeine phosphate (3.0 × 10-4–2.4 × 10-3), pilocarpine nitrate (5.0 × 10-4––6.0 × 10-3) and thiamine hydrochloride (1.0–5.0 × 10-3); the linear response ranges in mol dm-3 are given in parentheses. Complete inhibition curves are presented and relative “potency” is inferred. The effects of several interfering inhibitors are discussed.  相似文献   

12.
The pulsed laser photolysis‐resonance fluorescence technique has been used to determine the absolute rate coefficient for the Cl atom reaction with a series of ketones, at room temperature (298 ± 2) K and in the pressure range 15–60 Torr. The rate coefficients obtained (in units of cm3 molecule−1 s−1) are: acetone (3.06 ± 0.38) × 10−12, 2‐butanone (3.24 ± 0.38) × 10−11, 3‐methyl‐2‐butanone (7.02 ± 0.89) × 10−11, 4‐methyl‐2‐pentanone (9.72 ± 1.2) × 10−11, 5‐methyl‐2‐hexanone (1.06 ± 0.14) × 10−10, chloroacetone (3.50 ± 0.45) × 10−12, 1,1‐dichloroacetone (4.16 ± 0.57) × 10−13, and 1,1,3‐trichloroacetone (<2.4 × 10−12). © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 62–66, 2000  相似文献   

13.
The temperature-jump method has been used to determine the nickel(II)- and cobalt(II)-arginine complexation kinetics. In the pH range studied, the neutral form of the ligand, HL, is the attacking, as well as the complexed, ligand species. The reactions reported on are of the type where n = 1, 2, 3 and M is Ni or Co. At 25° and ionic strength 0.1M the association rate constants are: for nickel(II) k1 = 2.3 × 103(±20%), k2 = 2.4 × 104(±20%), k3 = 3.5 × 104(±40%) M?1 sec?1; for cobalt(II) k1 = 1.5 × 105(±20%), k2 = 8.7 × 105(±20%), k3 = 2.0 × 105(±40%) M?1 sec?1. Arginine binds to metal ions less well than homologous chelating agents due to the electrostatic repulsion arising from the positively charged terminus of the zwitterion. Kinetically, the effect appears in the association rate constants with nickel reactions more strongly influenced than cobalt.  相似文献   

14.
Guest–host inclusion complexes between 6-benzyladenine (6-BA), cucurbit[7]uril (Q[7]), symmetrical tetramethylcucurbit[6]uril (TMeQ[6]) and meta-hexamethyl-substituted cucurbit[6]uril (HMeQ[6]) in aqueous solution were investigated by 1H NMR, UV absorption spectroscopy and phase solubility studies. The 1H NMR spectra analysis revealed that the hosts selectively bound the phenyl moiety of the guests. Absorption spectroscopic analysis defined the stability of the host–guest inclusion complexes. A host:guest ratio of 1:1 was measured quantitatively as (5.63 ± 0.26) × 104, (1.94 ± 0.17) × 103 and (2.89 ± 0.23) × 103 mol L? 1 for the Q[7]-6-BA, TMeQ[6]-6-BA and HMeQ[6]-6-BA systems, respectively. Phase solubility diagrams were analysed through rigorous procedures to obtain estimates of the complex formation constants for Q[n]-6-BA complexation. The formation constants were (1.29 ± 0.24) × 104 L mol? 1 for Q[7]-6-BA, (3.20 ± 0.17) × 103 L mol? 1 for TMeQ[6]-6-BA and (3.52 ± 1.01) × 103 L mol? 1 for TMeQ[6]-6-BA. Furthermore, phase solubility studies showed that 6-BA solubility increased as a function of Q[7], TMeQ[6] and HMeQ[6] concentrations. The thermodynamic parameters of the complex formation were also determined. The formation of inclusion complexes between 6-BA and Q[7] was enthalpy controlled, suggesting that hydrophobic and van der Waals interactions were the main driving forces. Our results demonstrated that the complexation of 6-BA with Q[n] could be used to improve the solubility of 6-BA.  相似文献   

15.
The effect of ionising radiation on copper(II) phthalocyanine 3,4′,4′′,4′′′ tetrasulfonic acid, tetrasodium salt (Cu(II)tspc4-) in aqueous as well as in water-methanol solutions has been studied. The determined yields of complex decomposition (measured on the basis of absorption decay) depend on the composition of matrices and the dose applied. The rate constant of electron scavenging by Cu(II)tspc4-, k = (1.3 ± 0.1) × 1010 M-1 s-1 in methanol-water (2:8 v/v) solutions has been determined using the pulse radiolysis technique. The rate constant k = (1.16 ± 0.1) × 1010 M-1 s-1 of scavenging of OH radicals applying the competion method with p-nitrosodimethylaniline (pNDA) has been determined in aqueous solutions.  相似文献   

16.
The quenching rate constants of O2(1Δg) with n-butylamine, diethylamine, dipropylamine, dibutylamine, and tripropylamine have been determined in a discharge flow system. The rate constants are found to be (1.6 ± 0.2) × 103, (8.5 ± 0.6) × 104, (9.8 ± 0.5) × 104, (2.1 ± 0.1) × 105, and (8.6 ± 0.5) × 105 1 mol?1 s?1, respectively. The rate constants are found to increase in the order, tertiary amine → secondary amine → primary amine. The “inductive effect” of alkyl substitution is also found to increase the rate constant in a given series of amines.  相似文献   

17.
The flash photolysis of azo?n?propane and of azoisopropane has been studied by kinetic spectroscopy. Transient absorption spectra in theregion of 220–260 nm have been assigned to the n-propyl and isopropyl radicals. For the n-propyl radical, ?max = 744 ± 39 l/mol cm at 245 nm and the rate constants for the mutual reactions were measured to be kc = (1.0 ± 0.1) × 1010 l/mol sec (combination) and kd = (1.9 ± 0.2) × 109 l/mol sec (disproportionation). For the isopropyl radical, ?max = 1280 ± 110 l/mol cm at 238 nm, with kc = (7.7 ± 1.6) × 109 l/mol sec and kd = (5.0 ± 1.2) × 109 l/mol sec The rate constant for the dissociation of the vibrationally excited triplet state of the azopropanes into radicals was measured from the variation in the quantum yield of radicals with pressure. For azo-n-propane k = (6.6 ± 1.3) × 107 sec?1, and for azoisopropane k = (1.6 ± 0.4) × 108 sec?1. Collisional deactivation of the vibrationally excited singlet and triplet states was found to occur on every collision for n-pentane; but nitrogen and argon were inefficient with a rate constant of 1.1 × 1010 l/mol sec. Spectra observed in the region of 220–260 and 370–400 nm areattributed to the cis isomers of the parent trans-azopropanes. These are formed, as permanent products, in increasing amounts as the pressure is increased.  相似文献   

18.
The acetyl radical absorption spectrum is a broad band with maximum decadic extinction coefficient of (1.0 ± 0.1) × 104 ? mole?1 cm?1 at 215 nm and an oscillator strength of 0.23 ± 0.03. Absolute rate constants were estimated as 4.5 × 1010 ? mole?1 s?1 for the mutual interaction of acetyl radicals, and as 7.5 × 1010 ? mole?1 s?1 for the cross interaction of acetyl and methyl radicals.  相似文献   

19.
The rate constants for the reactions of the OH radicals with a series of aldehydes have been measured in the temperature range 243–372 K, using the pulsed laser photolysis‐pulsed laser induced fluorescence method. The obtained data for propanaldehyde, iso‐butyraldehyde, tert‐butyraldehyde, and n‐pentaldehyde were as follows (in cm3 molecule−1 s−1): (a) in the Arrhenius form: (5.3 ± 0.5) × 10−12 exp[(405 ± 30)/T], (7.3 ± 1.9) × 10−12 exp[(390 ± 78)/T], (4.7 ± 0.8) × 10−12 exp[(564 ± 52)/T], and (9.9 ± 1.9) × 10−12 exp[(306 ± 56)/T]; (b) at 298 K: (2.0 ± 0.3) × 10−11, (2.6 ± 0.4) × 10−11, (2.7 ± 0.4) × 10−11, and (2.8 ± 0.2) × 10−11, respectively. In addition, using the relative rate method and alkanes as the reference compounds, the room‐temperature rate constants have been measured for the reactions of chlorine atoms with propanaldehyde, iso‐butyraldehyde, tert‐butyraldehyde, n‐pentaldehyde, acrolein, and crotonaldehyde. The obtained values were (in cm3 molecule−1 s−1): (1.4 ± 0.3) × 10−10, (1.7 ± 0.3)10−10, (1.6 ± 0.3) × 10−10, (2.6 ± 0.3) × 10−10, (2.2 ± 0.3) × 10−10, and (2.6 ± 0.3) × 10−10, respectively. The results are presented and discussed in terms of structure‐reactivity relationships and atmospheric importance. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 676–685, 2000  相似文献   

20.
The relative rate technique has been used to determine rate constants for the reaction of bromine atoms with a variety of organic compounds. Decay rates of the organic species were measured relative to i-butane or acetaldehyde or both. Using rate constants of 1.74 × 10?15 and 3.5 × 10?12 cm3 molecule?1 s?1 for the reaction of Br with i?butane and acetaldehyde respectively, the following rate constants were derived, in units of cm3 molecule?1 s?1: 2, 3?dimethylbutane, (6.40 ± 0.77) × 10?15; cyclopentane, (1.16 ± 0.18) × 10?15, ethene, (≤2.3 × 10?13); propene, (3.85 ± 0.41) × 10?12; trans-2-butene, (9.50 ± 0.76) × 10?12, acetylene, (5.15 ± 0.19) × 10?15; and propionaldehyde, (9.73 ± 0.91) × 10?12. Quoted errors represent 2σ and do not include possible systematic errors due to errors in the reference rate constants. Experiments were performed at 295 ± 2 K and atmospheric pressure of synthetic air or nitrogen. The results are discussed with respect to the mechanisms of these reactions and their utility in serving as a laboratory source of alkyl and alkyl peroxy radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号