首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper deals with the problem of stress analysis of plates with a circular hole reinforced by flange reinforcing member. The so called flange reinforcing member here means that the reinforcing member is built up by setting shapes or bars with any section shape on both sides of the plates along the edge of the hole. Two cases of external loads are considered. In one case the external loads are stressesσX(∞)Y(∞),and τXY(∞) acting at infinite point of the plate, and in the other the external loads are linear distributed normal stresses. The procedure of solving the problems mentioned above consists of three steps. Firstly, the reinforcing member is taken out from the plates and considered to be a circular bar being solved to determine its deformation under the action of radial force q0(θ) and tangential force t0(θ) which are forces acting upon each other between reinforcing member and plate. Secondly, the displacements of plate with a circular hole under the action of q0(θ) and t0(θ) and external loads are determined. Finally, forces q0(θ) and t0(θ) are obtained by the compatibility of deformations between reinforcing member and plate. Then the internal forces and displacements of reinforcing member and plate are deduced from q0(θ) and t0(θ) obtained.  相似文献   

2.
In the present paper an attempt has been made to find out effects of uniform high suction in the presence of a transverse magnetic field, on the motion near a stationary plate when the fluid at a large distance above it rotates with a constant angular velocity. Series solutions for velocity components, displacement thickness and momentum thickness are obtained in the descending powers of the suction parameter a. The solutions obtained are valid for small values of the non-dimensional magnetic parameter m (= 4 e 2 H 0 2 /) and large values of a (a2).Nomenclature a suction parameter - E electric field - E r , E , E z radial, azimuthal and axial components of electric field - F, G, H reduced radial, azimuthal and axial velocity components - H magnetic field - H r , H , H z radial, azimuthal and axial components of magnetic field - H 0 uniform magnetic field - H* displacement thickness and momentum thickness ratio, */ - h induced magnetic field - h r , h , h z radial, azimuthal and axial components of induced magnetic field - J current density - m nondimensional magnetic parameter - p pressure - P reduced pressure - R Reynolds number - U 0 representative velocity - V velocity - V r , V , V z radial, azimuthal and axial velocity components - w 0 uniform suction through the disc. - density - electrical conductivity - kinematic viscosity - e magnetic permeability - a parameter, (/)1/2 z - a parameter, a - * displacement thickness - momentum thickness - angular velocity  相似文献   

3.
We consider infiltration into a soil that is assumed to have hydraulic conductivity of the form K = K = Kseh and water content of the form = K – r. Here h denotes capillary pressure head while Ks, , and r represent soil specific parameters. These assumptions linearize the flow equation and permit a closed form solution that displays the roles of all the parameters appearing in the hydraulic function K and . We assume Ks and r to be known. A measurement of diffusivity fixes the product of and resulting in a parameter identification problem for one parameter. We show that this parameter identification problem, in some cases, has a unique solution. We also show that, in some cases, this parameter identification problem can have multiple solutions, or no solution. In addition it is shown that solutions to the parameter identification problem can be very sensitive to small changes in the problem data.  相似文献   

4.
A perturbation analysis is presented for periodic heat transfer in radiating fins of uniform thickness. The base temperature is assumed to oscillate around a mean value. The perturbation expansion is carried out in terms of dimensionless amplitude of the base temperature oscillation. The zero-order problem which is nonlinear, and corresponds to the steady state fin behaviour, is solved by quasilinearization. A method of complex combination is used to reduce both the first and the second order problems to two, coupled linear boundary value problems which are subsequently solved by a noniterative numerical scheme. The second-order term is composed of an oscillatory component with twice the frequency of base temperature oscillation and a time-independent term which causes a net change in the steady state values of temperature and heat transfer rate. Within the range of parameters used, the net effect is to decrease the mean temperature and increase the mean heat transfer rate. This is in constrast to the linear case of convecting fins where the mean values are unaffected by base temperature oscillations. Detailed numerical results are presented illustrating the effects of fin parameter N and dimensionless frequency B on temperature distribution, heat transfer rate, and time-average fin efficiency. The time-average fin efficiency is found to reduce significantly at low N and high B.
Störungsanalyse für periodische Wärmeübertragung an Strahlungsrippen
Zusammenfassung Eine Störungsanalyse wird für periodische Wärmeübertragung in Strahlungsrippen gleicher Dicke vorgelegt. Die Fußtemperatur wird als um einen Mittelwert schwingend angenommen. Die Störungsentwicklung wird in Termen einer dimensionslosen Amplitude e dieser Schwingung angesetzt. Das Problem nullter Ordnung, das nichtlinear ist und dem stationären Verhalten der Rippe entspricht, wird durch Quasilinearisierung gelöst. Eine Methode der komplexen Kombination wird angewandt, um die Probleme erster und zweiter Ordnung auf zwei gekoppelte Grenzwertprobleme zu reduzieren, die nacheinander nach einem nichtiterativen Schema gelöst werden. Der Term zweiter Ordnung besteht aus einer Schwingungskomponente mit der doppelten Frequenz der Schwingung der Fußtemperatur und einem zeitunabhängigen Term, der eine Nettoänderung der stationären Werte der Temperatur und der Wärmeübertragung verursacht. Im verwendeten Bereich der Parameter tritt eine Abnahme der mittleren Temperatur und eine Zunahme der mittleren Wärmeübertragung auf. Das steht im Gegensatz zum linearen Fall der Konvektionsrippe, bei dem die Mittelwerte durch Schwingungen der Fußtemperatur nicht beeinflußt werden. Detaillierte numerische Ergebnisse zeigen die Einflüsse des Rippenparameters N und der dimensionslosen Frequenz B auf Temperatur Verteilung, Wärmeübertragung und zeitliches Mittel des Rippengütegrades. Dieses zeitliche Mittel nimmt merklich ab bei kleinem N und hohem B.

Nomenclature b fin thickness - B dimensionless frequency, L2/ - E emissivity - f0, f1 functions of X - g0, g1, g2 functions of X - h0, h1, h2 functions of X - k thermal conductivity - L fin Length - N fin parameter, 2EL2Tbm/bk - q heat transfer rate - Q dimensionless heat transfer rate, qL/kbTbm - t time - T temperature - Tb fin base temperature - TS effective sink temperature - Tbm mean fin base temperature - x axial distance - X dimensionless axial distance, x/L - dimensionless amplitude of base temperature (s. Eq.2) - thermal diffusivity - instantaneous fin efficiency - time-average fin efficiency - ss steady state fin efficiency - dimensionless temperature, T/Tbm - 0 zero-order approximation - 1 first-order approximation - 2 second-order approximation - 2s steady component of 2 - , 1, 2 constants - complex function of X - 1 real part of - 2 imaginary part of - complex function of X - 1 real part of Y - 2 imaginary part of - dimensionless time, t/L2 - frequency of base temperature oscillation  相似文献   

5.
The injection moulding of thermoplastic polymers involves, during mould filling, flows of hot melts into mould networks, the walls of which are so cold that frozen layers form on them. Theoretical analyses of such flows are presented here. Br Brinkman number - c L polymer melt specific heat capacity - c S frozen polymer specific heat capacity - e exponential function - erf() error function - Gz Graetz number in thermal entrance region - Gz * modified Graetz number in thermal entrance region - Gz overall Graetz number - h channel half-height - h * half-height of polymer melt region - H mean heat transfer coefficient - k L polymer melt thermal conductivity - k S frozen polymer thermal conductivity - ln( ) natural logarithm function - L length of thermal entrance region in pipe or channel - m viscosity shear rate exponent - M(,,) Kummer function - Nu Nusselt number - p pressure - P pressure drop in thermal entrance region - P f pressure drop in melt front region - Pe Péclet number - Pr Prandtl number - Q volumetric flow rate - r radial coordinate in pipe - R pipe radius - R * radius of polymer melt region - Re Reynolds number - Sf Stefan number - t time - T temperature - T i inlet polymer melt temperature - T m melting temperature of polymer - T w pipe or channel wall temperature - U(,,) Kummer function - u r radial velocity in pipe - u x axial velocity in channel - u y cross-channel velocity - u z axial velocity in pipe - V melt front velocity - w channel width - x axial coordinate in channel - x f melt front position in channel - y cross-channel coordinate - z axial coordinate in pipe - z f melt front position in pipe - () gamma function - dimensionless thickness of frozen polymer layer - i i-th term (i = 1,2,3) in power series expansion of - dimensionless axial coordinate in pipe - f dimensionless melt front position in pipe - dimensionless cross-channel coordinate - * dimensionless half-height of polymer melt region - dimensionless temperature - i i-th term (i = 0, 1, 2, 3) in power series expansion of - i first derivative of i with respect toø - i second derivative of i with respect toø - * dimensionless wall temperature - thermal diffusivity ratio - - latent heat of fusion - µ viscosity - µ * unit shear rate viscosity - dimensionless axial coordinate in channel - f dimensionless melt front position in channel - dimensionless pressure drop in thermal entrance region - f dimensionless pressure drop in melt front region - L polymer melt density - s frozen polymer density - dimensionless radial coordinate in pipe - * dimensionless radius of polymer melt region - ø dimensionless similarity variable in thermal entrance region - dummy variable - dimensionless contracted axial coordinate in thermal entrance region - dimensionless similarity variable in melt front region - * constant  相似文献   

6.
On the boundary conditions at the macroscopic level   总被引:2,自引:0,他引:2  
We study the problem of the boundary conditions specified at the boundary of a porous domain in order to solve the macroscopic transfer equations obtained by means of the volume-averaging method. The analysis is limited to the case of conductive transport but the method can be extended to other cases. A numerical study enables us to illustrate the theoretical results in the case of a model porous medium. Roman Letters sf interfacial area of the s-f interface contained within the macroscopic system m2 - A sf interfacial area of the s-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - d s , d f microscopic characteristic length m - g vector that maps to s, m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l REV characteristic length, m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for the f-phase at the f-s interface - n e outwardly directed unit normal vector at the dividing surface - T * macroscopic temperature field obtained by solving the macroscopic equation (3), K - V averaging volume, m3 - V s , V f volume of the considered phase within the averaging volume, m3 - volume of the macroscopic system, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 Greek Letters s , f volume fraction - ratio of thermal conductivities - s , f thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding to T * , K - spatial deviation temperature K - error on the temperature due to the macroscopic boundary conditions, K - spatial average - s , f intrinsic phase average  相似文献   

7.
Let D R N be a cone with vertex at the origin i.e., D = (0, )x where S N–1 and x D if and only if x = (r, ) with r=¦x¦, . We consider the initial boundary value problem: u t = u+u p in D×(0, T), u=0 on Dx(0, T) with u(x, 0)=u 0(x) 0. Let 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on and let + denote the positive root of (+N–2) = 1. Let p * = 1 + 2/(N + +). If 1 < p < p *, no positive global solution exists. If p>p *, positive global solutions do exist. Extensions are given to the same problem for u t=+¦x¦ u p .This research was supported in part by the Air Force Office of Scientific Research under Grant # AFOSR 88-0031 and in part by NSF Grant DMS-8 822 788. The United States Government is authorized to reproduce and distribute reprints for governmental purposes not withstanding any copyright notation therein.  相似文献   

8.
By using Donnell's simplication and starting from the displacement type equations of conical shells, and introducing a displacement functionU(s,,) (In the limit case, it will be reduced to cylindrical shell displacement function introduced by V. S. Vlasov) and a generalized loadq,(s,,),the equations of conical shells are changed into an eighth—order solvable partial differential equation about the displacement functionU(s,,). As a special case, the general bending problem of conical shells on Winkler foundation has been studied. Detailed numerical results and boundary coefficients for edge unit loads are obtained.The project supported by the National Natural Science Foundation of China.  相似文献   

9.
The Stroh formalism for two-dimensional deformation of an anisotropic elastic material does not give the stress ij explicitly in a symmetric form. It does not give an explicit expression for the strain ij at al. Mantic and Paris [1] have recently derived an explicit symmetric representation of stress. We present here a new and elementary derivation that is more straight forward and transparent. The derivation does not require consideration of the surface traction or the normalization of the Stroh eigenvectors. The new derivation also provides an explicit symmetric representation of strain. Moreover, it allows us to deduce two of the three Barnett–Lothe tensors L, S [2] and the associated tensors L ( ), S ( ) [3], resulting in a physical interpretation of these tensors and the component ( L S )21.  相似文献   

10.
Predicted and measured water-retention values,(), were compared for repacked, stratified core samples consisting of either a sand with a stone-bearing layer or a sand with a clay loam layer in various spatial orientations. Stratified core samples were packed in submersible pressure outflow cells, then water-retention measurements were performed between matric potentials,, of 0 to -100 kPa. Predictions of() were based on a simple volume-averaging model using estimates of the relative fraction and() values of each textural component within a stratified sample. In general, predicted() curves resembled measured curves well, except at higher saturations in a sample consisting of a clay loam layer over a sand layer. In this case, the model averaged the air-entry of both materials, while the air-entry of the sample was controlled by the clay loam in contact with the cell's air-pressure inlet. In situ, avenues for air-entry generally exist around clay layers, so that the model should adequately predict air-entry for stratified formations regardless of spatial orientation of fine versus coarse layers. Agreement between measured and predicted volumetric water contents,, was variable though encouraging, with mean differences between measured and predicted values in the range of 10%. Differences in of this magnitude are expected due to variability in pore structure between samples, and do not indicate inherent problems with the volume averaging model. This suggets that explicit modeling of stratified formations through detailed characterization of the stratigraphy has the potential of yielding accurate() values. However, hydraulic-equilibration times were distinctly different for each variation in spatial orientation of textural layering, indicating that transient behavior during drainage in stratified formations is highly sensitive to the stratigraphic sequence of textural components, as well as the volume fraction of each textural component in a formation. This indicates that prolonged residence times of water, nutrients, and pollutants are likely within finer-textured layers, when conditions have resulted in drainage of underlying coarser-textured strata.  相似文献   

11.
The present paper is devoted to the theoretical study of the secondary flow induced around a sphere in an oscillating stream of an elastico-viscous liquid. The boundary layer equations are derived following Wang's method and solved by the method of successive approximations. The effect of elasticity of the liquid is to produce a reverse flow in the region close to the surface of the sphere and to shift the entire flow pattern towards the main flow. The resistance on the surface of the sphere and the steady secondary inflow increase with the elasticity of the liquid.Nomenclature a radius of the sphere - b ik contravariant components of a tensor - e contravariant components of the rate of strain tensor - F() see (47) - G total nondimensional resistance on the surface of the sphere - g ik covariant components of the metric tensor - f, g, h secondary flow components introduced in (34) - k 0 measure of relaxation time minus retardation time (elastico-viscous parameter) - K =k 0 2/V 0 2 , nondimensional parameter characterizing the elasticity of the liquid - n measure of the ratio of the boundary layer thickness and the oscillation amplitude - N, T defined in (44) - p arbitrary isotropic pressure - p ik covariant components of the stress tensor - p ik contravariant components of the stress tensor associated with the change of shape of the material - R =V 0 a/v, the Reynolds number - S =a/V 0, the Strouhall number - r, , spherical polar coordinates - u, v, w r, , component of velocity - t time - V(, t) potential velocity distribution around the sphere - V 0 characteristic velocity - u, v, t, y, P nondimensional quantities defined in (15) - reciprocal of s - density - defined in (32) - defined in (42) - 0 limiting viscosity for very small changes in deformation velocity - complex conjugate of - oscillation frequency - = 0/, the kinematic coefficient of viscosity - , defined in (52) - (, y) stream function defined in (45) - =(NT/2n)1/2 y - /t convective time derivative (1) ik   相似文献   

12.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

13.
An attempt is made to investigate the number of possible stationary combustion modes in a continuous-flow semi-infinite pipe with allowance for heat losses through the walls. Cases of a zero-order reaction in the reaction mixture or similarity of the concentration and temperature fields are considered. The equations are averaged with respect to the transverse coordinate . Within the framework of these approximations it is found that the number of stationary combustion modes is determined by the roots n of some function. The roots 2k correspond only to trivial unstable solutions. The roots 2k–1 correspond to modes possible within broad regions of variation of the parameters characterizing the temperature of the mixture, the mixture feed rate, and the rate of heat removal. These regions intersect, forming zones where several stationary modes coexist. In these zones, apart from monotonic solutions there may also be solutions that initially make several oscillations. It is shown that the latter are obviously unstable and, in the last analysis, lead to one of the monotonic modes. The common case of not more than three roots is examined in detail.If the heat release function can change sign, then a similar picture is also observed in the absence of heat losses through the walls (the roots 2k–1 and 2k may change roles). In this case it is no longer necessary to average the equations with respect to , since there will not be any corresponding derivatives.  相似文献   

14.
Normal forms for random diffeomorphisms   总被引:1,自引:0,他引:1  
Given a dynamical system (,, ,) and a random diffeomorphism (): d d with fixed point at x=0. The normal form problem is to construct a smooth near-identity nonlinear random coordinate transformation h() to make the random diffeomorphism ()=h()–1() h() as simple as possible, preferably linear. The linearization D(, 0)=:A() generates a matrix cocycle for which the multiplicative ergodic theorem holds, providing us with stochastic analogues of eigenvalues (Lyapunov exponents) and eigenspaces. Now the development runs pretty much parallel to the deterministic one, the difference being that the appearance of turns all problems into infinite-dimensional ones. In particular, the range of the homological operator is in general not closed, making the conceptof-normal form necessary. The stochastic versions of resonance and averaging are developed. The case of simple Lyapunov spectrum is treated in detail.  相似文献   

15.
Wave angle for oblique detonation waves   总被引:3,自引:0,他引:3  
The flow field associated with a steady, planar, oblique detonation wave is discussed. A revision is provided for- diagrams, where is the wave angle and is the ramp angle. A new solution is proposed for weak underdriven detonation waves that does not violate the second law. A Taylor wave, encountered in unsteady detonation waves, is required. Uniqueness and hysteresis effects are also discussed.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

16.
Summary A twodimensional flow problem with heat addition can be expressed in terms of five parameters (pressure p, density , flow speed u, flow direction , rate of heating q) which must satisfy four equations (continuity, two components of momentum, and energy). It is shown how the equations become particularly simple, being linear and hyperbolic, if is specified and solutions obtained for the other four variables. An example is given of the flow through a supersonic combustion chamber.
Übersicht Zweidimensionale Strömungsprobleme mit Wärmezufuhr können mit Hilfe von 5 Größen (Druck p, Dichte , Strömungsgeschwindigkeit u, Strömungsneigung , Wärmezufuhr q) formuliert werden, die 4 Gleichungen erfüllen müssen (Erhaltungssätze für Masse, Energie und zwei Komponenten des Impulses). Es wird gezeigt, daß die Gleichungen besonders einfach werden, nämlich linear und hyperbolisch, wenn vorgegeben wird und Lösungen für die andern 4 Veränderlichen bestimmt werden. Als Beispiel wird die Überschallströmung in einer Brennkammer behandelt.
  相似文献   

17.
With time domain reflectometry (TDR) two dispersive parameters, the dielectric constant, , and the electrical conductivity, can be measured. Both parameters are nonlinear functions of the volume fractions in soil. Because the volume function of water ( w) can change widely in the same soil, empirical equations have been derived to describe these relations. In this paper, a theoretical model is proposed based upon the theory of dispersive behaviour. This is compared with the empirical equations. The agreement between the empirical and theoretical aproaches was highly significant: the ( w) relation of Topp et al. had a coefficient of determination r 2 = 0.996 and the (u) relation of Smith and Tice, for the unfrozen water content, u, at temperatures below 0°C, had an r 2 = 0.997. To obtain ( w) relations, calibration measurements were performed on two soils: Caledon sand and Guelph silt loam. For both soils, an r 2 = 0.983 was obtained between the theoretical model and the measured values. The correct relations are especially important at low water contents, where the interaction between water molecules and soil particles is strong.  相似文献   

18.
Summary Two-dimensional stress singularities in wedges have already drawn attention since a long time. An inverse square-root stress singularity (in a 360° wedge) plays an important role in fracture mechanics.Recently some similar three-dimensional singularities in conical regions have been investigated, from which one may be also important in fracture mechanics.Spherical coordinates are r, , . The conical region occupied by the elastic homogeneous body (and possible anisotropic) has its vertex at r=0. The mantle of the cone is described by an arbitrary function f(, )=0. The displacement components be u. For special values of (eigenvalues) there exist states of displacements (eigenstates) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakabbaaa6daaahjxzL5gapeqa% aiaadwhadaWgaaWcbaGaeqOVdGhabeaakiabg2da9iaadkhadaahaa% WcbeqaaiabeU7aSbaakiaadAgadaWgaaWcbaGaeqOVdGhabeaakiaa% cIcacqaH7oaBcaGGSaGaeqiUdeNaaiilaiabfA6agjaacMcaaaa!582B!\[u_\xi = r^\lambda f_\xi (\lambda ,\theta ,\Phi )\],which may satisfy rather arbitrary homogeneous boundary conditions along the generators.The paper brings a theorem which expresses that if is an eigenvalue, then also-1- is an eigenvalue. Though the theorem is related to a known theorem in Potential Theory (Kelvin's theorem), the proof has to be given along quite another line.
Zusammenfassung Zwei-dimensionale Spannungssingularitäten in keilförmigen Gebieten sind schon längere Zeit untersucht worden und neuerdings auch ähnliche drei-dimensionale Singularitäten in konischen Gebieten.Kugelkoordinaten sind r, , . Das konische Gebiet hat seine Spitze in r=0. Der Mantel des Kegels lässt sich beschreiben mittels einer willkürlichen Funktion f(, )=0. Die Verschiebungskomponenten seien u. Für spezielle Werte von (Eigenwerte) bestehen Verschiebunszustände % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakabbaaa6daaahjxzL5gapeqa% aiaadwhadaWgaaWcbaGaeqOVdGhabeaakiabg2da9iaadkhadaahaa% WcbeqaaiabeU7aSbaakiaadAgadaWgaaWcbaGaeqOVdGhabeaakiaa% cIcacqaH7oaBcaGGSaGaeqiUdeNaaiilaiabfA6agjaacMcaaaa!582B!\[u_\xi = r^\lambda f_\xi (\lambda ,\theta ,\Phi )\],welche homogene Randwerte der Beschreibenden des Kegels entlang genügen.Das Bericht bringt ein Theorem, welches aussagt, das und =–1– beide Eigenwerte sind.
  相似文献   

19.
The failure of the current theories to predict the coating thickness of non-Newtonian fluids in free coating operations is shown to be a result of the effective slip at the moving rigid surface being coated. This slip phenomenon is a consequence of stress induced diffusion occurring in flow of structured liquids in non-homogeneous flow fields. Literature data have been analysed to substantiate the slip hypothesis proposed in this work. The experimentally observed coating thickness is shown to lie between an upper bound, which is estimated by a no-slip condition for homogeneous solution and a lower bound, which is estimated by using solvent properties. Some design considerations have been provided, which will serve as useful guidelines for estimating coating thickness in industrial practice.fa exponent in eq. (15) - b n/(4 –n)(n + 1) - Ca Capillary number - D diffusivity - De Deborah number - g acceleration due to gravity - G Goucher number - h thickness profile - h 0 final coating thickness - K consistency index - L length available for diffusion - L t tube length - n power-law index - P pressure drop - Q flow rate - R cylinder radius - R t tube radius - t time available for diffusion - T 0 dimensionless thickness without slip - T s dimensionless thickness with slip - U c theoretically calculated withdrawal velocity to match the film thickness - u s slip velocity - U withdrawal velocity - U w theoretically calculated withdrawal velocity based on solvent properties - U * effective withdrawal velocity - x distance in the direction of flow - y distance transverse to the flow direction - curvature coefficient - slip coefficient - curvature coefficient - rate of deformation tensor - u s /U - relaxation time - density - surface tension - shear stress in tube flow - w wall shear stress in tube flow - stress tensor - w wall shear stress - T s /T 0 NCL-Communication No. 2818  相似文献   

20.
A theoretical study is made of the flow behavior of thin Newtonian liquid films being squeezed between two flat plates. Solutions to the problem are obtained by using a numerical method, which is found to be stable for all Reynolds numbers, aspect ratios, and grid sizes tested. Particular emphasis is placed on including in the analysis the inertial terms in the Navier-Stokes equations.Comparison of results from the numerical calculation with those from Ishizawa's perturbation solution is made. For the conditions considered here, it is found that the perturbation series is divergent, and that in general one must use a numerical technique to solve this problem.Nomenclature a half of the distance, or gap, between the two plates - a 0 the value of a at time t=0 - adot da/dt - ä d2 a/dt 2 - d3 a/dt 3 - a i components of a contravariant acceleration vector - f unknown function of z 0 and t defined in (6) - f i function defined in (9) f 1=r 0 g(z 0, t) f 2= 0 f 3=f(z 0, t) - F force applied to the plates - g unknown function of z 0 and t defined in (6) - g g/z 0 - h grid dimension in the z 0 direction (see Fig. 5) - Christoffel symbol - i, j, k, l indices - k grid dimension in the t direction (see Fig. 5) - r radial coordinate direction defined in Fig. 1 - r 0 radial convected coordinate - R radius of the circular plates - t time - v r fluid velocity in the r direction - v z fluid velocity in the z direction - v fluid velocity in the direction - x i cylindrical coordinate x 1=r x2= x3=z - z vertical coordinate direction defined in Fig. 1 - z 0 vertical convected coordinate - tangential coordinate direction - 0 tangential convected coordinate - viscosity - kinematic viscosity, / - i convected coordinate 1=r0 2=0 3=z0 - density  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号