首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider an inverse boundary value problem for the heat equation ? t u = div (γ? x u) in (0, T) × Ω, u = f on (0, T) × ?Ω, u| t=0 = u 0, in a bounded domain Ω ? ? n , n ≥ 2, where the heat conductivity γ(t, x) is piecewise constant and the surface of discontinuity depends on time: γ(t, x) = k 2 (x ∈ D(t)), γ(t, x) = 1 (x ∈ Ω?D(t)). Fix a direction e* ∈ 𝕊 n?1 arbitrarily. Assuming that ?D(t) is strictly convex for 0 ≤ t ≤ T, we show that k and sup {ex; x ∈ D(t)} (0 ≤ t ≤ T), in particular D(t) itself, are determined from the Dirichlet-to-Neumann map : f → ?ν u(t, x)|(0, T)×?Ω. The knowledge of the initial data u 0 is not used in the proof. If we know min0≤tT (sup xD(t) x·e*), we have the same conclusion from the local Dirichlet-to-Neumann map. Numerical examples of stationary and moving circles inside the unit disk are shown. The results have applications to nondestructive testing. Consider a physical body consisting of homogeneous material with constant heat conductivity except for a moving inclusion with different conductivity. Then the location and shape of the inclusion can be monitored from temperature and heat flux measurements performed at the boundary of the body. Such a situation appears for example in blast furnaces used in ironmaking.  相似文献   

2.
We study the convergence properties of an algorithm for the inverse problem of electrical impedance tomography, which can be reduced to a partial differential equation (PDE) constrained optimization problem. The direct problem consists of the potential equation div(??u) = 0 in a circle, with Neumann condition describing the behavior of the electrostatic potential in a medium with conductivity given by the function ?(x, y). We suppose that at each time a current ψ i is applied to the boundary of the circle (Neumann's data), and that it is possible to measure the corresponding potential ? i (Dirichlet data). The inverse problem is to find ?(x, y) given a finite number of Cauchy pairs measurements (? i , ψ i ), i = 1,…, N. The problem is formulated as a least squares problem, and the developed algorithm solves the continuous problem using descent iterations in its corresponding finite element approximations. Wolfe's conditions are used to ensure the global convergence of the optimization algorithm for the continuous problem. Although exact data are assumed, measurement errors in data and regularization methods shall be considered in a future work.  相似文献   

3.
《代数通讯》2013,41(3):1329-1357
Abstract

We give a computer-free proof that the sporadic simple group J 1 is a isomorphic to the progenitor 2*5 : A 5 factorized over a single relation. Precisely, we prove that J 1 is defined by the presentation ?x, y, t ∣ x 5 = y 3 = (xy)2 = 1 = t 2 = [y, t] = [y, t x 3 ] = (xt)7?.  相似文献   

4.
We study scattering problems for the one-dimensional nonlinear Dirac equation (?t + α?x + iβ)Φ = λ|Φ|p?1Φ. We prove that if p > 3 (resp. p > 3 + 1/6), then the wave operator (resp. the scattering operator) is well-defined on some 0-neighborhood of a weighted Sobolev space. In order to prove these results, we use linear operators D(t)xD(?t) and t?x + x?t ? α/2, where {D(t)}t∈? is the free Dirac evolution group. For the reader's convenience, in an appendix we list and prove fundamental properties of D(t)xD(?t) and t?x + x?t ? α/2.  相似文献   

5.
Aurora Llamas 《代数通讯》2013,41(5):1968-1981
We give conditions on the coefficients of a polynomial p(x) so that p(x + t) be log-concave or strictly log-concave. Several applications are given: if p(x) is a polynomial with nonnegative and nondecreasing coefficients, then p(x + t) is strictly log-concave for all t ≥ 1; for any polynomial p(x) with positive leading coefficient, there is t 0 ≥ 0 such that for any t ≥ t 0 it holds that the coefficients of p(x + t) are positive, strictly decreasing, and strictly log-concave; if p(x) is a log-concave polynomial with nonnegative coefficients and no internal zeros, then p(x + t) is strictly log-concave for all t > 0; Betti numbers of lexsegment monomial ideals are strictly log-concave.  相似文献   

6.
This paper is concerned with the study of the large-time behavior of the solutions u of a class of one-dimensional reaction–diffusion equations with monostable reaction terms f, including in particular the classical Fisher-KPP nonlinearities. The nonnegative initial data u 0(x) are chiefly assumed to be exponentially bounded as x tends to + ∞ and separated away from the unstable steady state 0 as x tends to ? ∞. On the one hand, we give some conditions on u 0 which guarantee that, for some λ > 0, the quantity c λ = λ +f′(0)/λ is the asymptotic spreading speed, in the sense that lim  t→+∞ u(t, ct) = 1 (the stable steady state) if c < c λ and lim  t→+∞ u(t, ct) = 0 if c > c λ. These conditions are fulfilled in particular when u 0(xe λx is asymptotically periodic as x → + ∞. On the other hand, we also construct examples where the spreading speed is not uniquely determined. Namely, we show the existence of classes of initial conditions u 0 for which the ω-limit set of u(t, ct + x) as t tends to + ∞ is equal to the whole interval [0, 1] for all x ∈ ? and for all speeds c belonging to a given interval (γ1, γ2) with large enough γ1 < γ2 ≤ + ∞.  相似文献   

7.
Let K be a nonempty closed and convex subset of a real reflexive Banach space X that has weakly sequentially continuous duality mapping J. Let T: K → K be a multivalued non-expansive non-self-mapping satisfying the weakly inwardness condition as well as the condition T(y) = {y} for any y ∈ F(T) and such that for a contraction f: K → K and any t ∈ (0, 1), there exists x t  ∈ K satisfying x t  ∈ tf(x t ) + (1 ? t)Tx t . Then it is proved that {x t } ? K converges strongly to a fixed point of T, which is also a solution of certain variational inequality. Moreover, the convergence of two explicit methods are also investigated.  相似文献   

8.
Lingli Wang 《代数通讯》2013,41(2):523-528
Let G be a nonabelian group and associate a noncommuting graph ?(G) with G as follows: The vertex set of ?(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. In 1987, Professor J. G. Thompson gave the following conjecture.

Thompson's Conjecture. If G is a finite group with Z(G) = 1 and M is a nonabelian simple group satisfying N(G) = N(M), then G ? M, where N(G):={n ∈ ? | G has a conjugacy class of size n}.

In 2006, A. Abdollahi, S. Akbari, and H. R. Maimani put forward a conjecture (AAM's conjecture) in Abdollahi et al. (2006) as follows.

AAM's Conjecture. Let M be a finite nonabelian simple group and G a group such that ?(G) ? ? (M). Then G ? M.

In this short article we prove that if G is a finite group with ?(G) ? ? (A 10), then G ? A 10, where A 10 is the alternating group of degree 10.  相似文献   

9.
We prove that isentropic gas flow does not admit non-degenerate TVD fields on any invariant set ?(r 0, s 0) = {r 0 < r < s < s 0}, where r, s are Riemann coordinates. A TVD field refers to a scalar field whose spatial variation Var X (?(τ(t, X), u(t, X))) is non-increasing in time along entropic solutions. The result is established under the assumption that the Riemann problem defined by an overtaking shock-rarefaction interaction gives the asymptotic states in the exact solution.

Little is known about global existence of large-variation solutions to hyperbolic systems of conservation laws u t  + f(u) x  = 0. In particular it is not known if isentropic gas flow admits a priori BV bounds which apply to all BV data.

In the few cases where such results are available (scalar case, Temple class, systems satisfying Bakhvalov's condition, isothermal gas dynamics) there are TVD fields which play a key role for existence. Our results show that the same approach cannot work for isentropic flow.  相似文献   

10.
We present an algorithm for approximating the solution of the degenerate diffusion problem ut = (?(u))xx in (0,1) × R+ (with zero Dirichlet boundary conditions, and nonnegative initial datum u0), where ?(u) = min {ku1} for some ? > 0. The algorithm also provides an approximation for the interface curves which represent the boundary of the Mushy Region ?? = {(x, t): ? (u(x, t)) = 1}. The convergence of the algorithm is proved.  相似文献   

11.
《代数通讯》2013,41(5):2053-2065
Abstract

We consider the group G of C-automorphisms of C(x, y) (resp. C[x, y]) generated by s, t such that t(x) = y, t(y) = x and s(x) = x, s(y) = ? y + u(x) where u ∈ C[x] is of degree k ≥ 2. Using Galois's theory, we show that the invariant field and the invariant algebra of G are equal to C.  相似文献   

12.
Let G be a finite graph on the vertex set [d] = {1,…, d} with the edges e 1,…, e n and K[t] = K[t 1,…, t d ] the polynomial ring in d variables over a field K. The edge ring of G is the semigroup ring K[G] which is generated by those monomials t e  = t i t j such that e = {i, j} is an edge of G. Let K[x] = K[x 1,…, x n ] be the polynomial ring in n variables over K, and define the surjective homomorphism π: K[x] → K[G] by setting π(x i ) = t e i for i = 1,…, n. The toric ideal I G of G is the kernel of π. It will be proved that, given integers f and d with 6 ≤ f ≤ d, there exists a finite connected nonbipartite graph G on [d] together with a reverse lexicographic order <rev on K[x] and a lexicographic order <lex on K[x] such that (i) K[G] is normal with Krull-dim K[G] = d, (ii) depth K[x]/in<rev (I G ) = f and K[x]/in<lex (I G ) is Cohen–Macaulay, where in<rev (I G ) (resp., in<lex (I G )) is the initial ideal of I G with respect to <rev (resp., <lex) and where depth K[x]/in<rev (I G ) is the depth of K[x]/in<rev (I G ).  相似文献   

13.
ABSTRACT

Let R be a prime ring with a nonzero derivation d and let f(X 1,…,X t ) be a multilinear polynomial over C, the extended centroid of R. Suppose that b[d(f(x 1,…,x t )), f(x 1,…,x t )] n  = 0 for all x i  ∈ R, where 0 ≠ b ∈ R and n is a fixed positive integer. Then f(X 1,…,X t ) is centrally valued on R unless char R = 2 and dim C RC = 4. We prove a more generalized version by replacing R with a left ideal.  相似文献   

14.
Hung-Yuan Chen 《代数通讯》2013,41(10):3709-3721
Let R be a noncommutative prime ring with extended centroid C, and let D: R → R be a nonzero generalized derivation, f(X 1,…, X t ) a nonzero polynomial in noncommutative indeterminates X 1,…, X t over C with zero constant term, and k ≥ 1 a fixed integer. In this article, D and f(X 1,…, X t ) are characterized if the Engel identity is satisfied: [D(f(x 1,…, x t )), f(x 1,…, x t )] k  = 0 for all x 1,…, x t  ∈ R.  相似文献   

15.
Let R be an m-dimensional pseudo-valuation domain with residue field k, let V be the associated valuation domain with residue field K, and let k 0 be the maximal separable extension of k in K. We compute the t-dimension of polynomial and power series rings over R. It is easy to see that t-dim R[x 1,…, x n ] = 2 if m = 1 and K is transcendental over k, but equals m otherwise, and that t-dim R[[x 1,…, x n ]] = ∞ if R is a nonSFT-ring. When R is an SFT-ring, we also show that: (1) t-dim R[[x]] = m; (2) t-dim R[[x 1,…, x n ]] = 2m ? 1, if n ≥ 2, K has finite exponent over k 0, and [k 0: k] < ∞; (3) t-dim R[[x 1,…, x n ]] = 2m, otherwise.  相似文献   

16.
The aim of this paper is to investigate stability and sensitivity of the observability variable in linear control systems, (LCS) for short. We first present two results of Hölder continuity in the abstract framework of the ordinary differential equation initial-value problem x′(t) = f(t,x(t)),x(t 0) = x 0. Afterwards, we apply our results to automatic systems, providing henceforth the sharpest bounds for the parametric input-output relation in LCS.  相似文献   

17.
Let G be a finite p-group of order p n and ?(G) be the subgroup of the tensor square of G generated by all symbols x ? x, for all x in G. In the present article, we construct an upper bound for the order of ?(G) and any extra special p-group. It is also shown that ?(G) ? ?(G/G′). Using our result, we obtain the explicit structure of the tensor square of G and π3 SK(G, 1). Finally, the structure of G will be characterized when the bound is attained.  相似文献   

18.
19.
In this work we study the existence of a solution for the problem ? Δ p u = f(u) + tΦ(x) + h(x), with homogeneous Dirichlet boundary conditions. Here the nonlinear term f(u) is a so-called jumping nonlinearity. In the proofs we use topological arguments and the sub-supersolutions method, together with comparison principles for the p-Laplacian.  相似文献   

20.
Let M be a compact Riemannian manifold. We prove existence of a global weak solution of the stochastic wave equation D t u t  = D x u x  + (X u  + λ0(u)u t  + λ1(u)u x )[Wdot] where X is a continuous vector field on M, λ0 and λ1 are continuous vector bundles homomorphisms from TM to TM, and W is a spatially homogeneous Wiener process on ? with finite spectral measure. We use recently introduced general method of constructing weak solutions of SPDEs that does not rely on any martingale representation theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号