首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The nonlinear complementarity problem can be reformulated as a nonlinear programming. For solving nonlinear programming, sequential quadratic programming (SQP) type method is very effective. But the QP subproblem may be inconsistent. In this paper, we propose a kind nonmonotone filter method in which the QP subproblem is consistent. By means of nonmonotone filter, this method has no demand on the penalty parameter which is difficult to obtain. Moreover, the restoration phase is not needed any more. Under reasonable conditions, we obtain the global convergence of the algorithm. Some numerical results are presented.  相似文献   

2.
In this paper, we propose a robust sequential quadratic programming (SQP) method for nonlinear programming without using any explicit penalty function and filter. The method embeds the modified QP subproblem proposed by Burke and Han (Math Program 43:277–303, 1989) for the search direction, which overcomes the common difficulty in the traditional SQP methods, namely the inconsistency of the quadratic programming subproblems. A non-monotonic technique is employed further in a framework in which the trial point is accepted whenever there is a sufficient relaxed reduction of the objective function or the constraint violation function. A forcing sequence possibly tending to zero is introduced to control the constraint violation dynamically, which is able to prevent the constraint violation from over-relaxing and plays a crucial role in global convergence and the local fast convergence as well. We prove that the method converges globally without the Mangasarian–Fromovitz constraint qualification (MFCQ). In particular, we show that any feasible limit point that satisfies the relaxed constant positive linear dependence constraint qualification is also a Karush–Kuhn–Tucker point. Under the strict MFCQ and the second order sufficient condition, furthermore, we establish the superlinear convergence. Preliminary numerical results show the efficiency of our method.  相似文献   

3.
In this paper, a sequential quadratically constrained quadratic programming (SQCQP) method for unconstrained minimax problems is presented. At each iteration the SQCQP method solves a subproblem that involves convex quadratic inequality constraints and a convex quadratic objective function. The global convergence of the method is obtained under much weaker conditions without any constraint qualification. Under reasonable assumptions, we prove the strong convergence, superlinearly and quadratic convergence rate.  相似文献   

4.
提出了一个求解非线性半定规划的无罚函数无滤子序列二次半定规划(SSDP)算法. 算法每次迭代只需求解一个二次半定规划子问题确定搜索方向; 非单调线搜索保证目标函数或约束违反度函数的充分下降, 从而产生新的迭代点. 在适当的假设条件下, 证明了算法的全局收敛性. 最后给出了初步的数值实验结果.  相似文献   

5.
A Modified SQP Method and Its Global Convergence   总被引:6,自引:0,他引:6  
The sequential quadratic programming method developed by Wilson, Han andPowell may fail if the quadratic programming subproblems become infeasibleor if the associated sequence of search directions is unbounded. In [1], Hanand Burke give a modification to this method wherein the QP subproblem isaltered in a way which guarantees that the associated constraint region isnonempty and for which a robust convergence theory is established. In thispaper, we give a modification to the QP subproblem and provide a modifiedSQP method. Under some conditions, we prove that the algorithm eitherterminates at a Kuhn–Tucker point within finite steps or generates aninfinite sequence whose every cluster is a Kuhn–Tucker point.Finally, we give some numerical examples.  相似文献   

6.
In this paper, an augmented Lagrangian method is proposed for binary quadratic programming (BQP) problems based on a class of continuous functions. The binary constraints are converted into a class of continuous functions. The approach reformulates the BQP problem as an equivalent augmented Lagrangian function, and then seeks its minimizer via an augmented Lagrangian method, in which the subproblem is solved by Barzilai–Borwein type method. Numerical results are reported for max-cut problem. The results indicate that the augmented Lagrangian approach is promising for large scale binary quadratic programming by the quality of the near optimal values and the low computational time.  相似文献   

7.
The nonlinear complementarity problem can be reformulated as a nonlinear programming. For solving nonlinear programming, sequential quadratic programming (SQP) type method is very effective. Moreover, filter method, for its good numerical results, are extensively studied to handle nonlinear programming problems recently. In this paper, a modified quadratic subproblem is proposed. Based on it, we employ filter technique to tackle nonlinear complementarity problem. This method has no demand on initial point. The restoration phase, which is always used in traditional filter method, is not needed. Global convergence results of the proposed algorithm are established under suitable conditions. Some numerical results are reported in this paper.  相似文献   

8.
逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂增广拉格朗日算法(SALM-BB).该算法在迭代中交替地求解一个无约束凸优化问题和一个带程。模约束的二次优化问题.然后借助BB算法求解无约束凸优化问题.通过简单的等价变形直接得到带程。模约束二次优化问题的精确解,并且给出了算法的收敛性定理.最后通过数值实验来测试SALM-BB算法对稀疏逻辑回归问题的计算精确性.数据来源包括真实的UCI数据和模拟数据.数值实验表明,相对于一阶算法SLEP,SALM-BB能够得到更低的平均逻辑损失和错分率.  相似文献   

9.
Wilson,Han和Powell提出的序列二次规划方法(简称SQP方法)是求解非线性规划问题的一个著名方法,这种方法每次迭代的搜索方向是通过求解一个二次规划子问题得到的,本文受[1]启发,得到二次规划子问题的一个近似解,进而给出了一类求解线性约束非线性规划问题的可行方向法,在约束集合满足正则性的条件下,证明了该算法对五种常用线性搜索方法具有全局收敛性。  相似文献   

10.
A standard quadratic optimization problem (StQP) consists of finding the largest or smallest value of a (possibly indefinite) quadratic form over the standard simplex which is the intersection of a hyperplane with the positive orthant. This NP-hard problem has several immediate real-world applications like the Maximum Clique Problem, and it also occurs in a natural way as a subproblem in quadratic programming with linear constraints. We propose unconstrained reformulations of StQPs, by using different approaches. We test our method on clique problems from the DIMACS challenge.  相似文献   

11.
一类不可微二次规划逆问题   总被引:1,自引:0,他引:1  
本文求解了一类二次规划的逆问题,具体为目标函数是矩阵谱范数与向量无穷范数之和的最小化问题.首先将该问题转化为目标函数可分离变量的凸优化问题,提出用G-ADMM法求解.并结合奇异值阈值算法,Moreau-Yosida正则化算法,matlab优化工具箱的quadprog函数来精确求解相应的子问题.而对于其中一个子问题的精确...  相似文献   

12.
A working set SQCQP algorithm with simple nonmonotone penalty parameters   总被引:1,自引:0,他引:1  
In this paper, we present a new sequential quadratically constrained quadratic programming (SQCQP) algorithm, in which a simple updating strategy of the penalty parameter is adopted. This strategy generates nonmonotone penalty parameters at early iterations and only uses the multiplier corresponding to the bound constraint of the quadratically constrained quadratic programming (QCQP) subproblem instead of the multipliers of the quadratic constraints, which will bring some numerical advantages. Furthermore, by using the working set technique, we remove the constraints of the QCQP subproblem that are locally irrelevant, and thus the computational cost could be reduced. Without assuming the convexity of the objective function or the constraints, the algorithm is proved to be globally, superlinearly and quadratically convergent. Preliminary numerical results show that the proposed algorithm is very promising when compared with the tested SQP algorithms.  相似文献   

13.
In this paper, we present a new sequential quadratically constrained quadratic programming (SQCQP) algorithm, in which a simple updating strategy of the penalty parameter is adopted. This strategy generates nonmonotone penalty parameters at early iterations and only uses the multiplier corresponding to the bound constraint of the quadratically constrained quadratic programming (QCQP) subproblem instead of the multipliers of the quadratic constraints, which will bring some numerical advantages. Furthermore, by using the working set technique, we remove the constraints of the QCQP subproblem that are locally irrelevant, and thus the computational cost could be reduced. Without assuming the convexity of the objective function or the constraints, the algorithm is proved to be globally, superlinearly and quadratically convergent. Preliminary numerical results show that the proposed algorithm is very promising when compared with the tested SQP algorithms.  相似文献   

14.
A feasible sequential quadratic programming (SQP) filter algorithm is proposed for general nonlinear programming. It is based on the modified quadratic programming (QP) subproblem in which each iteration proceeds in two phases. The first phase solves a general convex QP problem which does not require any feasibility restoration phase whose computation may be expensive. And, under some mild conditions, the global convergence is proved. The second phase can make the presented SQP method derive quadratic convergence by employing exact Hessian information.  相似文献   

15.
Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we consider the formulation of subproblems in which the objective function is a generalization of the Hestenes-Powell augmented Lagrangian function. The main feature of the generalized function is that it is minimized with respect to both the primal and the dual variables simultaneously. The benefits of this approach include: (i) the ability to control the quality of the dual variables during the solution of the subproblem; (ii) the availability of improved dual estimates on early termination of the subproblem; and (iii) the ability to regularize the subproblem by imposing explicit bounds on the dual variables. We propose two primal-dual variants of conventional primal methods: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual 1 linearly constrained Lagrangian (pd 1LCL) method. Finally, a new sequential quadratic programming (pdSQP) method is proposed that uses the primal-dual augmented Lagrangian as a merit function.  相似文献   

16.
In this paper we propose some improvements to a recent decomposition technique for the large quadratic program arising in training support vector machines. As standard decomposition approaches, the technique we consider is based on the idea to optimize, at each iteration, a subset of the variables through the solution of a quadratic programming subproblem. The innovative features of this approach consist in using a very effective gradient projection method for the inner subproblems and a special rule for selecting the variables to be optimized at each step. These features allow to obtain promising performance by decomposing the problem into few large subproblems instead of many small subproblems as usually done by other decomposition schemes. We improve this technique by introducing a new inner solver and a simple strategy for reducing the computational cost of each iteration. We evaluate the effectiveness of these improvements by solving large-scale benchmark problems and by comparison with a widely used decomposition package.  相似文献   

17.
This paper represents an inexact sequential quadratic programming (SQP) algorithm which can solve nonlinear programming (NLP) problems. An inexact solution of the quadratic programming subproblem is determined by a projection and contraction method such that only matrix-vector product is required. Some truncated criteria are chosen such that the algorithm is suitable to large scale NLP problem. The global convergence of the algorithm is proved.  相似文献   

18.
Most of the descent methods developed so far suffer from the computational burden due to a sequence of constrained quadratic subproblems which are needed to obtain a descent direction. In this paper we present a class of proximal-type descent methods with a new direction-finding subproblem. Especially, two of them have a linear programming subproblem instead of a quadratic subproblem. Computational experience of these two methods has been performed on two well-known test problems. The results show that these methods are another very promising approach for nondifferentiable convex optimization.  相似文献   

19.
NLPQL is a FORTRAN implementation of a sequential quadratic programming method for solving nonlinearly constrained optimization problems with differentiable objective and constraint functions. At each iteration, the search direction is the solution of a quadratic programming subproblem. This paper discusses the organization of NLPQL, including the formulation of the subproblem and the information that must be provided by a user. A summary is given of the performance of different algorithmic options of NLPQL on a collection of test problems (115 hand-selected or application problems, 320 randomly generated problems). The performance of NLPQL is compared with that of some other available codes.  相似文献   

20.
Based on the ideas of norm-relaxed sequential quadratic programming (SQP) method and the strongly sub-feasible direction method, we propose a new SQP algorithm for the solution of nonlinear inequality constrained optimization. Unlike the previous work, at each iteration, the norm-relaxed quadratic programming subproblem (NRQPS) in our algorithm only consists of the constraints corresponding to an estimate of the active set, and the high-order correction direction (used to avoid the Maratos effect) is obtained by solving a system of linear equations (SLE) which also only consists of such a subset of constraints and gradients. Moreover, the line search technique can effectively combine the initialization process with the optimization process, and therefore (if the starting point is not feasible) the iteration points always get into the feasible set after a finite number of iterations. The global convergence is proved under the Mangasarian–Fromovitz constraint qualification (MFCQ), and the superlinear convergence is obtained without assuming the strict complementarity. Finally, the numerical experiments show that the proposed algorithm is effective and promising for the test problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号