首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
F. Solymosi  J. Kiss 《Surface science》1981,104(1):181-198
No detectable adsorbed species were observed after exposure of HNCO to a clean Cu(111) surface at 300 K. The presence of adsorbed oxygen, however, exerted a dramatic influence on the adsorptive properties of this surface and caused the dissociative adsorption of HNCO with concomitant release of water. The adsorption of HNCO at 300 K produced two new strong losses at 10.4 and 13.5 eV in electron energy loss spectra, which were not observed during the adsorption of either CO or atomic N. These loses can be attributed to surface NCO on Cu(111). The surface isocyanate was stable up to 400 K. The decomposition in the adsorbed phase began with the evolution of CO2. The desorption of nitrogen started at 700 K. Above 800 K, the formation of C2N2 was observed. The characteristics of the CO2 formation and the ratios of the products sensitively depended on the amount of preadsorbed oxygen. No HNCO was desorbed as such, and neither NCO nor (NCO)2 were detected during the desorption. From the comparison of adsorption and desorption behaviours of HNCO, N, CO and CO2 on copper surfaces it was concluded that NCO exists as such on a Cu(111) surface at 300 K. The interaction of HNCO with oxygen covered Cu(111) surface and the reactions of surface NCO with adsorbed oxygen are discussed in detail.  相似文献   

2.
The decomposition reactions of formaldehyde on clean and oxygen dosed Pt(110) have been studied by LEED, XPS and TPRS. Formaldehyde is adsorbed in two states, a monolayer phase and a multilayer phase which were distinguishable by both TPRS and XPS. The saturated monolayer (corresponding to 8.06 × 1014 molecules cm−2) desorbed at 134 K and the multilayer phase (which could not be saturated) desorbed at 112 K. The only other reaction products observed at higher temperatures were CO and H2 produced in desorption limited processes and these reached a maximum upon saturation of the formaldehyde monolayer. The desorption spectrum of hydrogen was found to be perturbed by the presence of CO as reported by Weinberg and coworkers. It is proposed that local lifting of the clean surface (1 × 2) reconstruction is responsible for this behaviour. Analysis of the TPRS and XPS peak areas demonstrated that on the clean surface approximately 50% of the adsorbed monolayer dissociated with the remainder desorbing intact. Reaction of formaldehyde with preadsorbed oxygen resulted in the formation of H2O (hydroxyl recombination) and CO2 (decomposition of formate) desorbing at 200 and 262 K, respectively. The CO and H2 desorption peaks were both smaller relative to formaldehyde decomposition on the clean surface and in particular, H2 desorbed in a reaction limited process associated with decomposition of the formate species. No evidence was found for methane or hydrocarbon evolution in the present study under any circumstances. The results of this investigation are discussed in the light of our earlier work on the decomposition of methanol on the same platinum surface.  相似文献   

3.
The oxidation of hydrazine on the clean Pt(111) surface has been investigated by temperature-programmed reaction spectroscopy (TPRS) in the temperature range 130–800 K. Direct reaction of molecular oxygen is observed on the Pt(111) surface for the first time, as indicated by the desorption of nitrogen beginning at 130 K with a maximum rate at 145 K, below the molecular oxygen dissociation temperature. Direct reaction of hydrazine with adsorbed molecular oxygen results in the formation of water and nitrogen. With excess hydrazine, all surface oxygen is reacted, forming water. When only adsorbed atomic oxygen is present, the low-temperature nitrogen yield decreases by a factor of 3 and the peak nitrogen desorption temperature increases to 170 K. No high-temperature (450–650 K) nitrogen desorption characteristic of nitrogen atom recombination is seen, indicating that during oxidation the nitrogen-nitrogen bond in hydrazine remains intact, as observed previously for hydrazine decomposition on the Pt(111) surface and hydrazine oxidation on rhodium. Two water desorption peaks are observed, characteristic of desorption-limited (175 K) and reaction-limited (200 K) water evolution from the Pt(111) surface. For low coverages of hydrazine, only the reaction-limited water desorption is observed, previously attributed to water formed from adsorbed hydroxyl groups. When excess hydrazine is adsorbed, the usual hydrazine decomposition products, H2, N2 and NH3, are also observed. No nitrogen oxide species (NO, NO2 and N2O) were observed in these experiments, even when excess oxygen was available on the surface.  相似文献   

4.
The adsorption and decomposition of methanol on the Rh(100) surface have been studied using high-resolution electron energy loss spectroscopy and thermal desorption mass spectrometry. Below 200 K, methanol is molecularly adsorbed and bonds to the surface via the oxygen atom. At 200–220 K, a saturated methanol layer undergoes two competing reactions: desorption and OH bond cleavage to form an O-bonded methoxy species. The methoxy species is stable to approximately 250 K. Between 250 and 320 K, a fraction of the methoxy species decomposes to form coadsorbed CO and hydrogen adatoms while the remainder recombines with hydrogen adatoms to desorb as molecular methanol. The hydrogen adatoms remaining on the surface desorb as H2 between 270 and 400 K, and the CO desorbs between 450 and 550 K. Following a saturation exposure, approximately 0.2 monolayers of methanol decompose to eventually yield CO and H2 as desorption products. These results are compared to the chemistry of methanol on other metal surfaces.  相似文献   

5.
The adsorption of H2 and D2 has been studied on clean and K-promoted Pd(100) surfaces using thermal desorption, work function changes, ultraviolet photoelectron and Auger spectroscopy. The potassium adlayer significantly lowers the sticking coefficient (from 0.6 to 0.06 at θk = 0.2), and the uptake of hydrogen, but increases the desorption energy for H2 desorption. Calculation showed that each potassium adatom blocks approximately 4–5 adsorption sites for H2 adsorption. Atomization of hydrogen led to an increase of hydrogen uptake. The adsorption of potassium on the H-covered surface caused a significant decrease in the amount of hydrogen adsorbed on the surface (as indicated by less desorbing hydrogen below 500 K) and promoted the dissolution of H atoms into the bulk of Pd. The dissolved hydrogen was released only above 600–650 K. In the interpetation of the results the extended charge transfer from K-dosed Pd to the adsorbed H atoms and the direct interaction between adsorbed H and K adatoms are taken into account.  相似文献   

6.
The use of H2 and Ar plasmas for the cleaning of crystalline Si surfaces has been investigated previously by in-situ spectroscopic ellipsometry, LEED and Auger spectroscopy. H2 plasma treatment, followed by annealing at 700°C to desorb the adsorbed hydrogen, was found to produce high quality clean crystalline surfaces. Ellipsometry was shown to be sensitive not only to surface oxide layers and micro-roughness but also to hydrogen adsorbed on silicon surface. The desorption of hydrogen as a function of temperature from H2 plasma treated Si (1 0 0) and (1 1 1) surfaces was investigated. The presence of different phases of adsorbed hydrogen was shown by spectroscopic ellipsometry, in agreement with UPS and EELS studies. The clean (plasma treated and annealed) Si (1 0 0) and Si (1 1 1) surfaces show differences in their apparent dielectric functions, which may be due to the nature of the surface reconstruction.  相似文献   

7.
F. Solymosi  J. Kiss 《Surface science》1981,108(2):368-380
The adsorption and surface reaction of cyanogen on clean and oxygen covered Cu(111) have been investigated. From electron energy loss measurements, thermal desorption spectroscopy and electron beam effects in Auger spectroscopy, it is proposed that cyanogen adsorbs dissociatively on Cu(111) at 300 K. The activation energy for the desorption was calculated to be 180 kJ/mol. Cyanogen adsorption onto oxygen predosed Cu(111) is inferred to produce the NCO surface species. This interpretation was aided by data of electron energy loss measurements and from HNCO adsorption onto Cu(111) at 300 K. A reaction began in the co-adsorbed layer above 400 K, yielding CO2 and N2.  相似文献   

8.
The effects of potassium on the adsorption and dissociation of CH3Cl on a Pd(100) surface has been investigated by ultraviolet photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES), electron energy loss spectroscopy (in the electronic range EELS), temperature-programmed desorption (TPD) and work function change. In contrast to the clean surface, the adsorption of CH3Cl caused a significant work function increase, 0.9-1.4 eV, of potassium-dosed Pd. Preadsorbed K enhanced the binding energy of CH3C1 to the surface and induced the dissociation of adsorbed molecules. The extent of the dissociation increased almost linearly with the potassium content. The appearance of a new emission in the UPS spectrum at 9.2 eV, attributed to adsorbed CH3 species, and the low-temperature formation of ethane suggest that a fraction of adsorbed CH3Cl dissociates even at 115–125 K on potassium-dosed Pd(100). At the same time, a significant part of adsorbed CH3 radical is stabilized, the reaction of which occurs only at 250–300 K. By means of TPD measurements, H2, CH4, C2H6, C2H4, KCl and K were detected in the desorbing gases. The results are interpreted by assuming a through-metal electronic interaction at low potassium coverage and by a direct interaction of the Cl in the adsorbed CH3Cl with potassium at high potassium coverage. The latter proposal is supported by the electron excited Auger fine structure of the Cl signal and by the formation of KCl in the desorbing gases.  相似文献   

9.
The kinetics of isothermal H2 desorption from polycrystalline diamond are studied in real time. The surface H coverage (θH) is measured by mass analyzing the recoiled H+ ion signal during the desorption. We find that the H2 desorption is 1st order in θH with an activation energy of 69 ± 6 kcal/mol and a prefactor of 1010.5 ± 0.9 s−1. We suggest that formation of a C---C π-bond on the clean surface plays a key role in H2 desorption from diamond, a view consistent with previous theoretical calculations of H2 desorption from diamond.  相似文献   

10.
Michael A Henderson   《Surface science》1998,400(1-3):203-219
The reaction of CO2 and H2O to form bicarbonate (HCO3) was examined on the nearly perfect and vacuum annealed surfaces of TiO2(110) with temperature programmed desorption (TPD), static secondary ion mass spectrometry (SSIMS) and high resolution electron energy loss spectrometry (HREELS). The vacuum annealed TiO2(110) surface possesses oxygen vacancy sites that are manifested in electronic EELS by a loss feature at 0.75 V. These oxygen vacancy sites bind CO2 only slightly more strongly (TPD peak at 166 K) than do the five-coordinated Ti4+ sites (TPD peak at 137 K) typical of the nearly perfect TiO2(110) surface. Vibrational HREELS indicates that CO2 is linearly bound at the latter sites with a νa(OCO) frequency similar to the gas phase value. In contrast, oxygen vacancies dissociate H2O to bridging OH groups which recombine to liberate H2O in TPD at 490 K. No evidence for a reaction between CO2 and H2O is detected on the nearly perfect surface. In sequentially dosed experiments on the vacuum annealed surface at 110 K, CO2 adsorption is blocked by the presence of preadsorbed H2O, adsorbed CO2 is displaced by postdosed H2O, and there is little or no evidence for bicarbonate formation in either case. However, when CO2 and H2O are simultaneously dosed, a new CO2 TPD state is observed at 213 K, and the 166 K state associated with CO2 at the vacancies is absent. SSIMS was used to tentatively assign the 213 K CO2 TPD state to a bicarbonate species. The 213 K CO2 TPD state is not formed if the vacancy sites are filled with OH groups prior to simultaneous CO2+H2O exposure. Sticking coefficient measurements suggest that CO2 adsorption at 110 K is precursor-mediated, as is known to be the case for H2O adsorption on TiO2(110). A model explaining the circumstances under which the proposed bicarbonate species is formed involves the surface catalyzed conversion of a precursor-bound H2O–CO2 van der Waals complex to carbonic acid, which then reacts at unoccupied oxygen vacancies to generate bicarbonate, but falls apart to CO2 and H2O in the absence of these sites. This model is consistent with the conditions under which bicarbonate is formed on powdered TiO2, and is similar to the mechanism by which water catalyzes carbonic acid formation in aqueous solution.  相似文献   

11.
XPS, HREELS, ARUPS and Δø data show that furan chemisorbs non-dissociatively on Pd{111} at 175 K, the molecular plane being significantly tilted with respect to the surface normal. Bonding involves both the oxygen lone pair and significant π interaction with the substrate. The degree of decomposition that accompanies molecular desorption is a strong function of coverage: 40% of the adsorbate desorbs molecularly from the saturated monolayer. Decomposition occurs via decarbonylation to yield COa and Ha followed by desorption rate limited loss of H2 and CO. It seems probable that an adsorbed C3H3 species formed during this process undergoes subsequent stepwise dehydrogenation ultimately yielding H2 and Ca.  相似文献   

12.
S. Wright  O. Dippel  E. Hasselbrink   《Surface science》1997,390(1-3):209-213
The photochemical mechanisms leading to the desorption and fragmentation of Si2H6 adsorbed on a hydrogen terminated Si(100) surface have been explored by recording the time-of-flight distributions of products escaping from the surface and by using electron energy loss spectroscopy to probe possible electronic excitations. Photodesorption of intact Si2H6 involves hot electrons that lose energy and move to the conduction band edge before initiating desorption. When the wavelength of the incident light is 193 nm, Si2H6 fragments give mostly Si, SiH2, H2 and SiH4, but this pathway is quenched at longer wavelengths. This is consistent with direct excitation, but we also show that a negative ion resonance is accessible to substrate electrons that have been excited by 193 nm light.  相似文献   

13.
N. Saliba  D. H. Parker  B. E. Koel   《Surface science》1998,410(2-3):270-282
Atomic oxygen coverages of up to 1.2 ML may be cleanly adsorbed on the Au(111) surface by exposure to O3 at 300 K. We have studied the adsorbed oxygen layer by AES, XPS, HREELS, LEED, work function measurements and TPD. A plot of the O(519 eV)/Au(239 eV) AES ratio versus coverage is nearly linear, but a small change in slope occurs at ΘO=0.9 ML. LEED observations show no ordered superlattice for the oxygen overlayer for any coverage studied. One-dimensional ordering of the adlayer occurs at low coverages, and disordering of the substrate occurs at higher coverages. Adsorption of 1.0 ML of oxygen on Au(111) increases the work function by +0.80 eV, indicating electron transfer from the Au substrate into an oxygen adlayer. The O(1s) peak in XPS has a binding energy of 530.1 eV, showing only a small (0.3 eV) shift to a higher binding energy with increasing oxygen coverage. No shift was detected for the Au 4f7/2 peak due to adsorption. All oxygen is removed by thermal desorption of O2 to leave a clean Au(111) surface after heating to 600 K. TPD spectra initially show an O2 desorption peak at 520 K at low ΘO, and the peak shifts to higher temperatures for increasing oxygen coverages up to ΘO=0.22 ML. Above this coverage, the peak shifts very slightly to higher temperatures, resulting in a peak at 550 K at ΘO=1.2 ML. Analysis of the TPD data indicates that the desorption of O2 from Au(111) can be described by first-order kinetics with an activation energy for O2 desorption of 30 kcal mol−1 near saturation coverage. We estimate a value for the Au–O bond dissociation energy D(Au–O) to be 56 kcal mol−1.  相似文献   

14.
Infrared spectroscopic evidence is presented for the formation of linearly bonded CO species, as a result of surface interaction between H2 and CO2 at room temperature over silicalite-supported Pt. Comparison with direct CO adsorption results suggests that the active sites for this CO2 reaction are the corner or step sites on platinum particles. The CO formed on these active sites then migrates to other sites on the surface of Pt particles. Co-adsorbed hydrogen and water make the linearly bonded CO species more strongly adsorbed on Pt particles. However, exposure to oxygen or air at room temperature effectively removes these CO species.  相似文献   

15.
The reaction between adsorbed oxygen and segregated carbon on a cylindrical nickel single-crystal has been examined with Auger electron spectroscopy (AES) and temperature programmed desorption (TPD), for a range of surface orientation, oxygen exposure, and sulfur coverage. It was found that for small oxygen exposures, surface carbon and surface oxygen react during TPD to form a CO desorption peak, labeled β1. The β1 CO peak temperature and peak shape vary with orientation. At higher oxygen coverages, the CO desorption peak split into low-temperature and high-temperature peaks. The behavior of the β1 CO desorption peak for large oxygen exposures is consistent with a model of the carbon-oxygen recombination reaction in which the morphologies of the initial carbon and oxygen phases change during oxygen exposure as a result of repulsive lateral interactions. High oxygen exposures result in the formation of large regions of contact between the two phases; this is believed to produce the low-temperature β1 CO desorption peak. Small segregated-sulfur coverages, and low oxygen exposures, caused the β1 CO peak to shift to lower temperatures for all orientations. Sulfur is believed to cause more frequent contact between carbon and oxygen for small oxygen exposures because it compresses the adsorbed oxygen and segregated carbon into the sulfur-free areas of the surface. Large coverages of segregated sulfur inhibited carbon segregation on some, and oxygen adsorption on most, orientations. The absence of reactant species explains the disappearance of the β1 CO peak during TPD from orientations which had a high sulfur coverage.  相似文献   

16.
Z. M. Liu  M. A. Vannice   《Surface science》1996,350(1-3):45-59
The interaction between submonolayer titania coverages and Pt foil has been studied by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). The submonolayer titania can be fully oxidized to TiO2 at 923 K under 10−8 Torr O2, and partially oxidized to TiOx at lower oxidation temperatures. The oxidized surface can be reduced by annealing to 1000 K or higher, or by heating in H2 at 823 K, or by interacting with surface carbon formed from acetone decomposition. Under certain conditions (e.g., hydrogen reduction at 923 K), the surface titania can be fully reduced to metallic Ti which diffuses into bulk Pt readily. The reduced metallic Ti can resurface when the surface is oxidized at 923 K. Both XPS and HREELS data indicate the existence of subsurface oxygen, which plays an important role for the diffusion of Ti into and out of the Pt foil. Although no special interfacial active sites were revealed by HREELS studies of adsorbed acetone and CO, some TPD and XPS data suggest the presence of sites active for acetone decomposition.  相似文献   

17.
The formation of acetone from 2-propanol and Rh(111)-p(2 × 1)-O has been investigated by temperature programmed reaction and X-ray photoelectron spectroscopies and isotopic labeling experiments under ultrahigh vacuum conditions. Some 2-propanol forms 2-propoxide on Rh(111)-p(2× 1)-O below 250 K and selective β (with respect to the metal in 2-propoxide) C-H bond breaking at 270 K is the primary path for acetone evolution. A minor amount of reversible C-H bond activation is also observed. β-carbon-hydrogen bond breaking is proposed to be the rate-limiting step for the initial acetone evolution from 2-propanol on Rh(111)-p(2× 1)-O at high coverage based on kinetic isotope effects. The rate of acetone evolution is in part rate-limited by desorption, however, for low 2-propanol exposures. In addition, there is some oxygen exchange between the surface and the acetone at 320 K. Combustion to H2O, CO and CO2is a competing pathway. Irreversible γ-C-H bond breaking primarily leads to combustion. The reactivity of 2-propanol on the (2 × 1)-O surface is dramatically different from that on clean Rh(111), where nonselective decomposition to CO and H2 is induced. The inhibition of extensive, nonselective C-H and C-C bond breaking is a crucial factor in determining the selectivity for β-dehydrogenation to produce acetone.  相似文献   

18.
The adsorption and decomposition of H2S on the Ge(100) surface is investigated. H2S is a simple sulfur containing molecule that eventually decomposes to yield hydrogen gas and deposits sulfur on the germanium surface. The surface reactions of H2S are investigated by ultraviolet photoelectron spectroscopy, Auger electron spectroscopy, and temperature programmed desorption. Room temperature exposure of H2S to Ge(100) results in dissociative adsorption which can be followed easily by ultraviolet photoelectron spectroscopy. Warming the H2S exposed surface results in some molecular desorption and further decomposition of the adsorbed species. At saturation, 0.25 ML of H2S decomposes generating 0.5 ML of atomic hydrogen. Above the hydrogen desorption temperature some etching of the germanium surface is observed by sulfur. The etch product, GeS, is subsequently observed in temperature programmed desorption experiments. Exposure of H2S to the Ge surface at elevated temperatures leads to higher sulfur coverages. A sulfur coverage approaching 0.5 ML can be deposited at the higher exposure temperatures.  相似文献   

19.
The nature of the interaction of isocyanic acid (HNCO) with the active centers at the ideal anatase TiO2 (1 0 1) surface were studied using ab initio density functional theory (DFT) method with a cluster model. Two types of adsorption of isocyanic acid are found to be likely at (1 0 1) surface – dissociative and molecular adsorption. Only molecular adsorption of HNCO leads to the direct weakening and further splitting of the NC bond, which is a necessary step for the hydrolysis of isocyanic acid. During molecular adsorption of HNCO, an energetically stable intermediate surface complex is created with an adsorption energy of −1.33 eV, in which the HNCO skeleton is changing due to new strong bonds between C–Os and N–Tis. Based on the existence of this intermediate complex a probable reaction pathway for the hydrolysis of HNCO over the ideal anatase (1 0 1) surface was developed. A surface oxygen vacancy was formed after the decomposition of the intermediate complex and CO2 desorption. Afterwards, water adsorbs at the oxygen vacancy site and NH3 is successively formed. The HNCO hydrolysis over TiO2 was found to be energetically favorable with global energy gain of about −2.08 eV.  相似文献   

20.
The surface chemistry of indium tin oxide (ITO) has been investigated with Auger electron spectroscopy (AES) and high resolution electron energy loss spectroscopy (HREELS). A vibrating Kelvin probe (KP) with a graphite reference was used to monitor the absolute work function (Φ) of ITO as a function of chemical modification. The ITO was exposed in situ to molecular hydrogen (H2), hot-filament-activated oxygen (O2*), and hot-filament-activated deuterium (D2*). The initial Φ of ITO was determined to be 5.2 eV, and surface chemical changes had strong effects on this value, as seen by KP. Exposure of clean ITO to O2* increased Φ to 5.6 eV, but the increase was short-lived. The changes in Φ over time were correlated with the uptake of carbon impurities in ultra high vacuum (UHV), as monitored by AES.

The HREELS of ITO revealed significant hydrocarbon impurities. Chemical reduction of ITO produced a metallic surface and dehydrogenated the adsorbed hydrocarbons. Both re-oxidation of metallic ITO and oxidation of clean ITO temporarily removed adventitious carbon from the surface, but oxidized ITO adsorbed an even larger quantity of carbon over time.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号