首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
In order to study the effect of copper ion implantation on the aqueous corrosion behavior, samples of zircaloy-4 were implanted with copper ions with fluences ranging from 1 × 1016 to 1 × 1017 ions/cm2, using a metal vapor vacuum arc source (MEVVA) operated at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the copper ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircaloy-4 in a 1 M H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-4 implanted with copper ions when the fluence is smaller than 5 × 1016 ions/cm2. The corrosion resistance of implanted samples declined with increasing the fluence. Finally, the mechanism of the corrosion behavior of copper-implanted zircaloy-4 was discussed.  相似文献   

2.
In order to study the effect of titanium ion implantation on the aqueous corrosion behavior of zirconium, specimens were implanted with titanium ions with fluence ranging from 1 × 1016 to 1 × 1017 ions/cm2, using a metal vapor vacuum arc (MEVVA) source at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zirconium in a 1 M H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zirconium implanted with titanium ions. The larger the fluence, the better is the corrosion resistance of implanted sample. Finally, the mechanism of the corrosion behavior of titanium-implanted zirconium was discussed.  相似文献   

3.
It is believed that magnesium and its alloys may find applications in biomedical fields as implants, bone fixation devices, and tissue engineering scaffolds. However, their corrosion rate must be controlled. In this study, biomedical magnesium-calcium (Mg-Ca) alloys were ion-implanted with zinc. The surface nanomechanical performance and corrosion behavior of the ion-implanted Mg-Ca alloys are determined. The results show that zinc ion implantation at a dose of 0.9 × 1017 ions/cm2 significantly improves the surface hardness and modulus. However, the results on corrosion resistance reveal that zinc ion implantation degrades the corrosion behavior of Mg-Ca alloys. Thus, zinc is not a favorable element for the ion implantation treatment of biomedical Mg-Ca alloys.  相似文献   

4.
High purity alumina ceramics (99% Al2O3) was implanted by copper ion and titanium ion in a metal vapour vacuum arc (MEVVA) implanter, respectively. The influence of implantation parameters was studied varying ion fluence. The samples were implanted by 68 keV Cu ion and 82 keV Ti ion with fluences from 1 × 1015 to 1 × 1018 ions/cm2, respectively. The as-implanted samples were investigated by scanning electron microscopy (SEM), glancing X-ray diffraction (GXRD), scanning Auger microscopy (SAM), and four-probe method. Different morphologies were observed on the surfaces of the as-implanted samples and clearly related to implantation parameters. For both ion implantations, the sheet resistances of the alumina samples implanted with Cu and Ti ion fluences of 1 × 1018 ions/cm2, respectively, reached the corresponding minimum values because of the surface metallization. The experimental results indicate that the high-fluence ion implantation resulted in conductive layer on the surface of the as-implanted high purity alumina ceramics.  相似文献   

5.
Titanium and zirconia are bioinert materials lacking bioactivity. In this work, surface modification of the two typical biomaterials is conducted by Mg-ion-implantation using a MEVVA ion source in an attempt to increase their bioactivity. Mg ions were implanted into zirconia and titanium with fluences ranging from 1 × 1017 to 3 × 1017 ions/cm2 at 40 keV. The Mg-implanted samples, as well as control (unimplanted) samples, were immersed in SBF for 7 days and then removed to identify the presence of calcium and phosphate (Ca-P) coatings and to characterize their morphology and structure by SEM, XRD, and FT-IR. SEM observations confirm that globular aggregates are formed on the surfaces of the Mg-implanted zirconia and titanium while no precipitates are observed on the control samples. XRD and FT-IR analyses reveal that the deposits are carbonated hydroxyapatite (HAp). Our experimental results demonstrate that Mg-implantation improves the bioactivity of zirconia and titanium. Further, it is found that the degree of bioactivity is adjustable by the ion dose. Mechanisms are proposed to interpret the improvement of bioactivity as a result of Mg implantation and the difference in bioactivity between zirconia and titanium.  相似文献   

6.
A diamond-like carbon film (DLC) was successfully synthesized using a hybrid PVD process, involving a filter arc deposition source (FAD) and a carbon plasma ion implanter (CPII). A quarter-torus plasma duct filter markedly reduced the density of the macro-particles. Graphite targets were used in FAD. Large electron and ion energies generated from the plasma duct facilitate the activation of carbon plasma and the deposition of high-quality DLC films. M2 tool steel was pre-implanted with 45 kV carbon ions before the DLC was deposited to enhance the adhesive and surface properties of the film. The ion mixing effect, the induction of residual stress and the phase transformation at the interface were significantly improved. The hardness of the DLC increased to 47.7 GPa and 56.5 GPa, and the wear life was prolonged to over 70 km with implantation fluences of 1 × 1017 ions/cm2 and 2 × 1017 ions/cm2, respectively.  相似文献   

7.
In order to study the effect of yttrium ion implantation on the aqueous corrosion behavior of laser beam welded zircaloy-4 (LBWZr4), The butt weld joint of zircaloy-4 was made by means of a carbon dioxide laser, subsequently the LBWZr4 samples were implanted with yttrium ion using a MEVVA source at an energy of 40 keV, with a fluence range from 1 × 1016 to 4 × 1016 ions/cm2 at about 150 °C. Three-sweep potentiodynamic polarization measurement was employed to evaluate the aqueous corrosion behavior of yttrium-implanted LBWZr4 in a 0.5 M H2SO4 solution. Scanning electron microscopy (SEM) was used to examine the surface topographic character of the yttrium-implanted LBWZr4 before and after the potentiodynamic polarization measurement. The valences of the carbon, yttrium, and zirconium in the surface layer were analyzed by X-ray photoemission spectroscopy (XPS). It was found that a significant improvement was achieved in the aqueous corrosion resistance of yttrium-implanted LBWZr4 compared with that of the un-implanted LBWZr4. The mechanism of the corrosion resistance improvement of the yttrium-implanted LBWZr4 is probably due to the addition of the yttrium oxide dispersoid into the zirconium matrix.  相似文献   

8.
Ti6Al4V alloy was implanted with nitrogen-oxygen mixture by using plasma based ion implantation (PBII) at pulsed voltage −10, −30 and −50 kV. The implantation was up to 6 × 1017 ions/cm2 fluence. The changes in chemical composition, structure and hardness of the modified surfaces were studied by XPS and nanoindentation measurements. According to XPS, it was found that the modified layer was predominantly TiO2, but contained small amounts of TiO, Ti2O3, TiN and Al2O3 between the outmost layer and metallic substrate. Surface hardness and wear resistance of the samples increased significantly after PBII treatment, the wear rate of the sample implanted N2-O2 mixture at −50 kV decreased eight times than the untreated one. The sample implanted N2-O2 mixture showed better wear resistance than that of the sample only implanted oxygen at − 50 kV. The wear mechanism of untreated sample was abrasive-dominated and adhesive, and the wear scar of the sample implanted at −50 kV was characterized by abrasive wear-type ploughing.  相似文献   

9.
The present paper concentrates on structure and micro-mechanical properties of the helium-implanted layer on titanium treated by plasma-based ion implantation with a pulsed voltage of −30 kV and doses of 3, 6, 9 and 12 × 1017 ions/cm2, respectively. X-ray photoelectron spectroscopy and transmission electron microscopy are employed to characterize the structure of the implanted layer. The hardnesses at different depths of the layer were measured by nano-indentation. We found that helium ion implantation into titanium leads to the formation of bubbles with a diameter from a few to more than 10 nm and the bubble size increases with the increase of dose. The primary existing form of Ti is amorphous in the implanted layer. Helium implantation also enhances the ingress of O, C and N and stimulates the formations of TiO2, Ti2O3, TiO, TiC and TiN in the near surface layer. And the amount of the ingressed oxygen is obviously higher than those of nitrogen and carbon due to its higher activity. At the near surface layer, the hardnesses of all implanted samples increases remarkably comparing with untreated one and the maximum hardness has an increase by a factor of up to 3.7. For the samples implanted with higher doses of 6, 9 and 12 × 1017 He/cm2, the local displacement bursts are clearly found in the load-displacement curves. For the samples implanted with a lower dose of 3 × 1017 He/cm2, there is no obvious displacement burst found. Furthermore, the burst width increases with the increase of the dose.  相似文献   

10.
A highly efficient non-linear optical organometallic compound zinc cadmium thiocyanate (ZCTC) single crystal was grown by solvent evaporation method. The as grown single crystals were implanted with 45 keV N5+ ions having energy at various fluencies of 1 × 1015, 5 × 1015, 1 × 1016 and 5 × 1016 ions/cm2. The surface modification induced by the ion implantation was studied using scanning electron microscopy. The UV spectrum shows an increase in absorbance with the increase in the dosage of the ions implanted. There is a red shift in the cut off wavelength due to implantation which may be attributed to the lattice damage produced during implantation. From the Raman spectra, it is observed that there is no shift in the peak positions or any extra peaks due to implantation confirming that the nitrogen ions are not substituted into the lattice. The FWHM, area and intensity of the Raman peak corresponding to CN stretching vibration were calculated and the influence of ion implantation on these parameters was discussed. The effect of implantation on the PL spectra was analysed and discussed in detail. The change in refractive index of the sample due to implantation was reported.  相似文献   

11.
Nitrogen ions were implanted into SiC ceramics by using ion implantation technology (N+-SiC). The surface structure and chemical bonds of N+-SiC ceramics were determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and their nanohardness was measured by nanoindenter. The friction and wear properties of the N+-SiC/SiC tribo-pairs were investigated and compared with those of SiC/SiC tribo-pairs in water using ball-on-disk tribo-meters. The wear tracks on the N+-SiC ceramics were observed by non-contact surface profilometer and scanning electron microscope (SEM) and their wear volumes were determined by non-contact surface profilometer. The results show that the N+-SiC ceramics were mainly composed of SiC and SiCN phase and SiN, CC, CN and CN bonds were formed in the implantation layer. The highest hardness of 22.3 GPa was obtained as the N+-SiC ceramics implanted at 50 keV and 1 × 1017 ions/cm2. With an increase in nitrogen ion fluence, the running-in period of N+-SiC/SiC tribo-pairs decreased, and the mean stable friction coefficient decreased from 0.049 to 0.024. The N+-SiC ceramics implanted at 50 keV and 5 × 1017 ions/cm2 exhibited the excellent tribological properties in water. In comparison of SiC/SiC ceramic tribo-pairs, the lower friction coefficient and lower wear rate for the N+-SiC/SiC tribo-pairs were acquired.  相似文献   

12.
The optical reflectivity (both specular and off-specular) of poly(methyl methacrylate) (PMMA) implanted with silicon ions (Si+) at energy of 50 keV, is studied in the spectral range 0.25-25 μm. The effect from the Si+ implantation on the reflectivity of two PMMA materials is examined in the dose range from 1014 to 1017 ions/cm2 and is linked to the structure formed in this ion implanted plastic. As compared to the pristine PMMA, an enhancement of the reflectivity of Si+ implanted PMMA is observed, that is attributed to the modification of the subsurface region of PMMA upon the ion implantation. The ion-produced subsurface organic interface is also probed by laser-induced thermo-lens.  相似文献   

13.
The surface of poly(tetrafluoroethylene) (PTFE or Teflon) was treated by nitrogen plasma-based ion implantation. Accelerating voltages between 15 and 30 kV, fluences between 1 × 1017 and 3 × 1017 cm−2 and fluence rates between 3 × 1013 and 7 × 1013 cm−2 s−1 were applied. The effects of these main parameters were examined on the evolution of surface chemical composition, mean roughness, abrasive wear, wettability and surface electrical resistance. The aim was to obtain relationships, enabling to control the surface properties examined.The F/C atomic ratio determined by XPS strongly decreased, correlating inversely with voltage. The mean surface roughness characterized by topography measurements, increased, correlating directly with fluence and inversely with voltage. The wear volume obtained by multipass scratch tests did not show clear relationship with the main process parameters, however, it increased upon treatment with the increase of surface roughness and O/C atomic ratio. The water contact angle increased at low voltages and high fluences, due to preferential increase of roughness, and decreased at high voltages and low fluences, owing to intense defluorination and incorporation of N and O. The electrical resistance of the PBII-treated surfaces decreased by several orders of magnitude, showing a significant inverse correlation with fluence. It continued to decrease for samples exposed to air, primarily after treatments performed with low fluences, due to post-treatment type oxidation.  相似文献   

14.
Ultra-low-energy ion implantation of silicon with a hydrogen-terminated (0 0 1) surface was carried out using a mass-separated 31P+ ion beam. The ion energy was 30 eV, the displacement energy of silicon, and the ion doses were 6 × 1013 ions/cm2. Annealing after the implantation was not carried out. The effects of ion implantation on the surface electrical state of silicon were investigated using X-ray photoelectron spectroscopy (XPS). The Si 2p peak position using XPS depends on the doping conditions because the Fermi level of the hydrogen-terminated silicon surface is unpinned. The Si 2p peak position of the specimen after ion implantation at a vacuum pressure of 3 × 10−7 Pa was shifted to the higher energy region. It suggested the possibility of phosphorus doping in silicon without annealing. In the case of ion implantation at 5 × 10−5 Pa, the Si 2p peak position was not shifted, and the peak was broadened because of the damage by the fast neutrals. Ultra-low-energy ion doping can be achieved at ultra-high-vacuum conditions.  相似文献   

15.
Amorphous-carbon (a-C) films were deposited on a single-crystal silicon substrate by vacuum vapor deposition system and these amorphous carbon films were implanted with 110 keV C+ at fluences of 1 × 1017 ions/cm2. The effect of ion mixing on the surface morphology, friction behavior and adhesion strengths of amorphous carbon films was examined making use of atomic force microscopy (AFM), ball-on-disk reciprocating friction tester, nano-indentation system and scanning electron microscope (SEM). The changes in chemical composition and structure were investigated by using X-ray photoelectron spectroscopy (XPS). The results show that the anti-wear life and adhesion of amorphous carbon films on the Si substrates were significantly increased by C ion implantation. The SiC chemical bonding across the interface plays a key role in the increase of adhesion strength and the anti-wear life of amorphous carbon film. The friction and wear mechanisms of amorphous carbon film under dry friction condition were also discussed.  相似文献   

16.
ZnO films prepared by radio frequency magnetron sputtering were singly or sequentially implanted with 120 keV Fe ions at a fluence of 5 × 1016 ions/cm2 and 20 keV C ions at a fluence of 3 × 1015 ions/cm2. Magnetic and optical properties as well as structures of the films have been investigated using various techniques. Magnetic measurements show that the as-deposited ZnO film presents room temperature ferromagnetism. Single Fe or C ion implantation has no contribution to enhancement in the film magnetism, while magnetic moment increases distinctly in the Fe and C ions sequentially implanted film. Results from structural measurements reveal that Fe nanoparticles are formed in the Fe singly implanted ZnO film. The post C implantation induces dissolution of Fe nanoparticles and promotes Fe atoms to substitute Zn atoms in the lattice. Based on the structural results, the effect of magnetic enhancement has been tentatively interpreted.  相似文献   

17.
We report on the formation of the planar waveguide by 550 keV O ion followed by 250 keV O ion implantation in lithium niobate (LiNbO3), at fluences of 6 × 1014 ions/cm2 and 3 × 1014 ions/cm2, respectively. The Rutherford backscattering/channeling spectra have shown the atomic displacements in the damage region before and after annealing. A broad and nearly homogeneous damage layer has been formed by double-energy ion implantation after annealing. Both the dark mode spectra and the data of refractive index profile verified that the extraordinary refractive index was enhanced in the ion implanted region of LiNbO3. A homogeneous near-field intensity profile was obtained by double-low-energy ion implantation. There is a reasonable agreement between the simulated modal intensity profile and the experimental data. The estimated propagation loss is about 0.5 dB/cm.  相似文献   

18.
This research investigates the effect of ion implantation dosage level and further thermal treatment on the physical characteristics of chromium coatings on Si(1 1 1) substrates. Chromium films had been exposed to nitrogen ion fluencies of 1 × 1017, 3 × 1017, 6 × 1017 and 10 × 1017 N+ cm−2 with a 15 keV energy level. Obtained samples had been heat treated at 450 °C at a pressure of 2 × 10−2 Torr in an argon atmosphere for 30 h. Atomic force microscopy (AFM) images showed significant increase in surface roughness as a result of nitrogen ion fluence increase. Secondary ion mass spectroscopy (SIMS) studies revealed a clear increased accumulation of Cr2N phase near the surface as a result of higher N+ fluence. XRD patterns showed preferred growth of [0 0 2] and [1 1 1] planes of Cr2N phase as a result of higher ion implantation fluence. These results had been explained based on the nucleation-growth of Cr2N phase and nitrogen atoms diffusion history during the thermal treatment process.  相似文献   

19.
Benzotriazole (BTAH) is an excellent inhibitor for the corrosion of copper and many of its alloys in unpolluted media. Protection is attributed to the formation of a film of Cu(I)BTA. Injection of sulfide ions into a benzotriazole inhibited salt water damages the protective Cu(I)BTA film very rapidly, increases the corrosion rate and leads to the formation of copper sulfide. This effect is quite marked at a sulfide concentration as low as 10−5 M (about 0.3 ppm sulfur) in the presence of 10−2 M BTAH, which is 1000-fold greater than that of the sulfide ion. The intensity of sulfide attack increases with its concentration.Prolonged pre-passivation of copper in the BTAH protected medium even at high concentration does not markedly improve the resistance of the protective film to sulfide attack. This finding is contrary to a well-documented phenomenon in unpolluted media where the inhibiting efficiency of BTAH increases with the time of immersion and the concentration of the inhibitor. X-ray photoelectron spectroscopy (XPS) reveals the presence of both sulfide and BTAH on the corroded surface indicating that sulfide attack is localized.  相似文献   

20.
Ar+ and He+ ions were implanted into Ge samples with (1 0 0), (1 1 0), (1 1 1) and (1 1 2) orientations at 15 K with fluences ranging from 1×1011 to 1×1014 cm−2 for the Ar+ ions and fluences ranging from 1×1012 to 6×1015 cm−2 for the He+ ions. The Rutherford backscattering (RBS) technique in the channelling orientation was used to study the damage built-up in situ. Implantation and RBS measurements were performed without changing the target temperature. The samples were mounted on a four axis goniometer cooled by a close cycle He cryostat. The implantations were performed with the surface being tilt 7° off the ion beam direction to prevent channelling effects. After each 300 keV Ar+ and 40 keV He+ implantation, RBS analysis was performed with 1.4 MeV He+ ions.For both the implantation ions, there is about no difference between the values found for the damage efficiency per ion for the four different orientations. This together with the high value (around 5 times higher than that found in Si), gives rise to the assumption of amorphous pocket formation per incident ion, i.e. direct impact amorphization, already at low implantation fluences. At higher fluences, when collision cascades overlap, there is a growth of the already amorphized regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号