首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulsed laser ablation (PLA) in the liquid phase was successfully employed to synthesize calcium tungstate (CaWO4) nanocolloidal suspension. The crystalline phase, particle morphology and laser ablation mechanism for the colloidal nanoparticles were investigated using XRD, TEM and SEM. The obtained colloidal suspension consisted of well-dispersed CaWO4 nanoparticles which showed a spherical shape with sizes ranging from 5 to 30 nm. The laser ablation and the nanoparticle forming process were discussed under consideration of the photo-ablation mechanism, where the nanoparticles were generated by rapid condensation of the plume in high pressured ethanol vapor. The optical properties of the prepared CaWO4 colloidal nanoparticles were analyzed in detail using XPS, Raman spectroscopy, UV-Vis spectroscopy and PL spectrophotometry. The optical band gap was estimated by Tauc and Menths law. PACS 42.62.-b; 82.70.Dd; 78.55.Hx; 81.07.Wx  相似文献   

2.
Hierarchical calcium molybdate (CaMoO4) nanostructured microspheres were synthesized via a facile room-temperature route assisted by an ionic liquid, 1-n-butyl-3-methylimidazolium chloride. The product was characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that micro-scaled CaMoO4 powders were assembled by nanoparticles with diameters ranging from 10 to 20 nm. The optical absorbance, photoluminescence emission (PL), and luminescence excitation (PLE) were investigated. The PL spectra excited at 273 nm have a strong green emission band maximum at 511 nm, which is attributed to the charge-transfer transitions within the MoO42− complex, and the luminescence intensity indicated a good luminescence quality of the CaMoO4 materials. By varying the amount of this assisted agent, we found that the ionic liquid played a crucial role as a surfactant in the formation of CaMoO4 materials with uniform hierarchical structure, which may be beneficial to the luminescence performance. This study presented a promising preparation strategy towards other luminescent materials.  相似文献   

3.
Titanium dioxide nanoparticles in distilled H2O solvent were prepared by laser ablation. The experiments were performed irradiating a Ti target with a second harmonic (532 nm) output of a Nd:YAG laser varying the operative fluence between 1 and 10 J cm−2 and for an ablation time ranging from 10 to 30 min. Electron microscopy measurements have evidenced the predominant presence of nanoparticles with diameter smaller than 10 nm together with agglomerations of 100-200 nm whose content increases with the laser fluence. At low laser fluence the particles’ size distribution shows that more than 85% of the nanoparticles have a size smaller than 5 nm while at mid and high fluences the presence of 5-7 nm nanoparticles is predominant. XPS analysis has revealed the presence of different titanium suboxide phases with the prevalence of Ti-O bonds from TiO2 species. The optical bandgap values, determined by UV-vis absorption measurements, are compatible with the anatase phase.  相似文献   

4.
Nanoparticles (NPs) were produced by ablating tungsten and boron-carbide (B4C) target materials in atmospheric pressure nitrogen ambient using ArF excimer laser pulses. The size distributions of the NPs formed during the ablation were monitored—within a 7-133 nm size window—by a condensation particle counter connected to a differential mobility analyzer. The laser repetition rate was varied between 1-50 Hz, and the fluence was systematically changed in the range of 0.5-15 J/cm2, for both materials, allowing a comparative study in an extended laser parameter regime. The multishot ablation threshold (Φth) of B4C was determined to be ∼1.9 J/cm2 for the laser used (ArF excimer, λ = 193 nm). Similarly to earlier studies, it was shown that the size distributions consist of mainly small nanoparticles (<∼20 nm) attributed to a non-thermal ablation mechanism below Φth. An additional broad peak appears (between 20 and 40 nm) above Φth as a consequence of the thermally induced macroscopic ablation. Chemical composition of deposited polydisperse nanoparticles was studied by X-ray photoelectron spectroscopy showing nitrogen incorporation into the boron-carbide.  相似文献   

5.
Tetragonal CaMoO4 and CaMoO4:Eu3+ with various novel three-dimensional (3D) hierarchical architectures were successfully synthesized via a facile, efficient sonochemistry process in the absence of any surfactant or template. XRD, EDS, FE-SEM, and photoluminescence (PL) were employed to characterize the as-obtained products. It was found that morphology modulation could be easily realized by changing pH value of the precursor. The pH value of the precursor not only affected the substructures of the hierarchical structures, but also determined the size distributions of the final products. The formation mechanism for different hierarchical architectures was proposed on the basis of time-dependent experiments. The luminescence spectra showed that CaMoO4:Eu3+ phosphors can be effectively excited by the near ultraviolet (UV) (396 nm) and blue (466 nm) light, and exhibited strong red emission around 615 nm, which was attributed to the Eu3+5D07F2 transition. Compared with Y2O3:Eu3+ phosphor, CaMoO4:Eu3+ is much more stable, efficient and suitable, therefore, this phosphors could be a promising red component for possible applications in the field of LEDs.  相似文献   

6.
The Sm3+-doped CaWO4 nanoparticles were synthesized by hydrothermal method. The room temperature photoluminescence (PL) spectra of Sm3+-doped CaWO4 nanoparticles doped with different Sm3+ concentrations under 405 nm excitation have been investigated. The PL spectra showed four strong emission peaks at 460, 571, 609, and 653 nm. The first emission peak at 460 nm could be due to a structural defect of the lattice, an oxygen-deficient WO3 complex. The other three emissions at 571, 609, and 653 nm were due to the f-f forbidden transitions of the 4f electrons of Sm3+, corresponding to 4G5/26H5/2 (571 nm), 6H7/2 (609 nm), and 6H9/2 (653 nm), respectively. In addition, the optimum Sm3+ concentration in CaWO4 nanoparticles for optical emission was determined to be 1.0%. The Sm3+4G5/26H7/2 (609 nm) emission intensity of Sm3+-doped CaWO4 nanoparticles significantly increased with the increase of Sm3+ concentration, and showed a maximum when Sm3+ doping content was 1.0%. If Sm3+ concentration continued to increase, namely more than 1.0%, the Sm3+4G5/26H7/2 emission intensity would decrease. The present materials might be a promising phosphor for white-light LED applications.  相似文献   

7.
The adsorption of alginate (Alg) onto the surface of in water dispersed Fe3O4 nanoparticles and zeta potential of alginate-coated Fe3O4 nanoparticles have been investigated to optimize the colloidal stability of Alg-coated Fe3O4 nanoparticles. The adsorption amount of Alg increased with the decrease of adsorption pH. The zeta potential of Fe3O4 nanoparticles shifted to a lower value after adsorption of Alg. The lower adsorption pH was the lower zeta potential of Fe3O4 nanoparticles became. The Alg-coated Fe3O4 nanoparticles were found to be stabilized by steric and electrostatic repulsions. Those prepared at pH 6 were not stable around pH 5, and those prepared at pH 4 became unstable at pH below 3.5. Alg of Mw 45 kDa was a little bit more adsorbed onto nanoparticles surface than that of Mw 24 kDa. An average Fe3O4 core size of 9.3 ± 1.7 nm was found by transmission electronic microscopy. An average hydrodynamic diameter of 30-150 nm was measured by photon correlation spectroscopy. However, an average core size of 10 nm and an average hydrodynamic diameter of 38 nm were estimated from the magnetization curve of the concentrated magnetic fluids (MFs). The maximum available saturation magnetization of MFs was about 3.5 kA/m.  相似文献   

8.
This paper describes the synthesis of TiO2 nanoparticles by laser ablation in solution synthesis (Lasis). The laser excimer beam passes through a focusing lens and it is sent to the reaction chamber. The frequency used during the synthesis was 20 Hz, intensity 26 kV The metal ablated by the laser beam undergoes an oxidation process resulting from the reaction with water. We obtain TiO2 nanoparticles with average size of 6.5 nm, crystallized in the rutile structure. The crystallographic and morphological structure was studied by transmission electron microscopy.  相似文献   

9.
We report formation of colloidal suspension of zinc oxide nanoparticles by pulsed laser ablation of a zinc metal target at room temperature in different liquid environment. We have used photoluminescence, atomic force microscopy and X-ray diffraction to characterize the nanoparticles. The sample ablated in deionized water showed the photoluminescence peak at 384 nm (3.23 eV), whereas peaks at 370 nm (3.35 eV) were observed for sample prepared in isopropanol. The use of water and isopropanol as a solvent yielded spherical nanoparticles of 14-20 nm while in acetone we found two types of particles, one spherical nanoparticles with sizes around 100 nm and another platelet-like structure of 1 μm in diameter and 40 nm in width. The absorption peak of samples prepared in deionized water and isopropanol are seen to be substantially blue shifted relative to that of the bulk zinc oxide due to the strong confinement effect. The technique offers an alternative for preparing the nanoparticles of active metal.  相似文献   

10.
Femtosecond laser ablation of aluminum oxide (Al2O3) and aluminum nitride (AlN) ceramics was performed under normal atmospheric conditions (λ = 785 nm, τp = 185 fs, repetition rate = 1 kHz), and threshold laser fluencies for single- and multi-pulse ablation were determined. The ablation characteristics of the two ceramics showed similar trends except for surface morphologies, which revealed virtually no melting in Al2O3 but clear evidence of melting for AlN. Based on subsequent X-ray photoelectron spectroscopy (XPS) analyses, the chemistry of these ceramics appeared to remain the same before and after femtosecond laser ablation.  相似文献   

11.
We examine the nanosecond and femtosecond UV laser ablation of poly(methyl methacrylate) (PMMA) as a function of molecular weight (Mw). For laser ablation with nanosecond laser pulses, at the excimer wavelengths 248 nm and 193 nm, we show that high temperatures develop; yet the dynamics of material ejection differs depending on polymer Mw. The results on the nanosecond ablation of polymers are accounted within the framework of bulk photothermal model and the results of molecular dynamics simulations. Turning next to the 248 nm ablation with 500 fs laser pulses, the ablation threshold and etching rates are also found to be dependent on polymer Mw. In addition, ablation results in morphological changes of the remaining substrate. Plausible mechanisms are advanced.  相似文献   

12.
CaMoO4:Pr(core), CaMoO4:Pr@CaMoO4 (core/shell) and CaMoO4:Pr@CaMoO4@SiO2 (core/shell/shell) nanoparticles were synthesized using polyol method. X-ray diffraction (XRD), thermogravimatric analysis (TGA), UV–vis absorption, optical band gap energy analysis, Fourier transform infrared (FTIR), FT-Raman and photoluminescence (PL) spectroscopy were employed to investigate the structural and optical properties of the synthesized core and core/shell nanoparticles. The results of the XRD indicate that the obtained core, core/shell and core/shell/shell nanoparticles crystallized well at ~150 °C in ethylene glycol (EG) under urea hydrolysis. The growth of the CaMoO4 and SiO2 shell (~12 nm) around the CaMoO4:Pr core nanoparticles resulted in an increase of the average size of the nanopaticles as well as in a broadening of their size distribution. These nanoparticles can be well-dispersed in distilled water to form clear colloidal solutions. The photoluminescence spectra of core, core/shell and core/shell/shell nanoparticles show the characteristic charge transfer emission band of MoO4 2? (533 nm) and Pr3+ 4f2?→?4f2, with multiple strong 3H4?→?3P2, 1D2?→?3H4 and 3P0?→?3?F2 transitions located at ~490, 605 and 652 nm, respectively. The emission intensity of the CaMoO4:Pr@CaMoO4 core/shell and CaMoO4:Pr@CaMoO4@SiO2 core/shell/shell nanoparticles increased ~4.5 and 1.7 times,respectively, with respect to those of CaMoO4:Pr core nanoparticles. This indicates that a significant amount of nonradiative centers existing on the surface of CaMoO4:Pr@CaMoO4 core/shell nanoparticles can be eliminated by the shielding effect of CaMoO4 shells.  相似文献   

13.
Size controlled cubic Fe3O4 nanoparticles in the size range 90–10 nm were synthesized by varying the ferric ion concentration using the oxidation method. A bimodal size distribution was found without ferric ion concentration and the monodispersity increased with higher concentration. The saturation magnetization decreased from 90 to 62 emu/g when the particle size is reduced to 10 nm. The Fe3O4 nanoparticles with average particle sizes 10 and 90 nm were surface modified with prussian blue. The attachment of prussian blue with Fe3O4 was found to depend on the concentration of HCl and the particle size. The saturation magnetization of prussian blue modified Fe3O4 varied from 10 to 80 emu/g depending on the particle size. The increased tendency for the attachment of prussian blue with smaller particle size was explained based on the surface charge. The prussian blue modified magnetite nanoparticles could be used as a radiotoxin remover in detoxification applications.  相似文献   

14.
The laser ablation of Ge and GaAs targets placed in water and ethanol was carried out using the fundamental radiation of nanosecond Nd:YLF laser. The results of preparation and the optical and nonlinear optical characterization of the Ge and GaAs nanoparticle suspensions are presented. The considerable shift of the band gap energy of the nanoparticles compared to the bulk semiconductors was observed. The distribution of nanoparticle sizes was estimated in the range of 1.5-10 nm on the basis of the TEM and spectral measurements. The nonlinear refractive indices and nonlinear absorption coefficients of Ge and GaAs nanoparticles were defined by the z-scan technique using second harmonic radiation of picosecond Nd:YAG laser (λ = 532 nm).  相似文献   

15.
Rare earth doped NaLa(WO4)2 nanoparticles have been prepared by a simply hydrothermal synthesis procedure. The X-ray diffraction (XRD) pattern shows that the Eu3+-doped NaLa(WO4)2 nanoparticles with an average size of 10-30 nm can be obtained via hydrothermal treatment for different time at 180 °C. The luminescence intensity of Eu3+-doped NaLa(WO4)2 nanoparticles depended on the size of the nanoparticles. The bright upconversion luminescence of the 2 mol% Er3+ and 20 mol% Yb3+ codoped NaLa(WO4)2 nanoparticles under 980 nm excitation could also be observed. The Yb3+-Er3+ codoped NaLa(WO4)2 nanoparticles prepared by the hydrothermal treatment at 180 °C and then heated at 600 °C shows a 20 times stronger upconversion luminescence than those prepared by hydrothermal treatment at 180 °C or by hydrothermal treatment at 180 °C and then heated at 400 °C.  相似文献   

16.
A pulsed KrF excimer laser of irradiance of about 108 W/cm2 was utilized to synthesize Si nanocrystals on SiO2/Si substrates. The results were compared with that ones obtained by applying low bias voltage to Si(1 0 0) target in order to control the kinetic energy of plasma ions. Glancing incidence X-ray diffraction spectra indicate the presence of silicon crystalline phases, i.e. (1 1 1) and (2 2 0), on SiO2/Si substrates. The average Si nanocrystal size was estimated to be about 45 nm by using the Debye-Scherrer formula. Scanning electron microscopy and atomic force microscopy images showed the presence of nanoparticles of different size and shape. Their distribution exhibits a maximum concentration at 49 nm and a fraction of 14% at 15 nm.  相似文献   

17.
The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas.The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α′) and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH)2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air.  相似文献   

18.
Femtosecond pulsed laser ablation (τ = 120 fs, λ = 800 nm, repetition rate = 1 kHz) of thin diamond-like carbon (DLC) films on silicon was conducted in air using a direct focusing technique for estimating ablation threshold and investigating the influence of ablation parameter on the morphological features of ablated regions. The single-pulse ablation threshold estimated by two different methods were ?th(1) = 2.43 and 2.51 J/cm2. The morphological changes were evaluated by means of scanning electron microscopy. A comparison with picosecond pulsed laser ablation shows lower threshold and reduced collateral thermal damage.  相似文献   

19.
Submicron-powder luminophores CaMoO4 and CaWO4 obtained via solid-phase reactions have been studied using diffuse-reflection (DR) spectroscopy and photoluminescence (PL) spectroscopy. It is found that the diffuse-reflection spectrum in the range of a fundamental absorption edge of <300 nm is distorted by PL overlapping, so that subsequent calculations of optical band gap E g of luminophores CaMoO4 and CaWO4 result in an overestimation of this value. An algorithm for the correct processing of diffuse-reflection spectra is described. It is based on a subtraction of the photoluminescence spectrum in the range of fundamental absorption. The correct E g values and energy values for the defect levels in the bandgap of CaWO4 and CaMoO4 are determined to amount to 4.78, 4.83, and 4.86 ± 0.01 eV and 3.97, 4.07, 4.16 ± 0.01 eV, respectively.  相似文献   

20.
AWO4 (A = Ca, Sr) was prepared from metal salts [Ca(NO3)2·4H2O or Sr(NO3)2], Na2WO4·2H2O and different moles of cetyltrimethylammonium bromide (CTAB) in water by cyclic microwave irradiation. The structure of AWO4 was characterized by X-ray diffraction (XRD) and selected area electron diffraction (SAED). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the presence of nanoparticles in clusters with different morphologies; spheres, peaches with notches, dumb-bells and bundles, influenced by CTAB. Six Raman vibrational peaks of scheelite structure were detected at 908, 835, 793, 399, 332 and 210 cm−1 for CaWO4 and 917, 833, 795, 372, 336 and 192 cm−1 for SrWO4, which are assigned as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and νf.r.(Ag), respectively. Fourier transform infrared (FTIR) spectra provided the evidence of W-O stretching vibration in [WO4]2− tetrahedrons at 793 cm−1 for CaWO4 and 807 cm−1 for SrWO4. The peaks of photoluminescence (PL) spectra were at 428-434 nm for CaWO4, and 447-451 nm for SrWO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号