首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lan JH  Shi WQ  Yuan LY  Zhao YL  Li J  Chai ZF 《Inorganic chemistry》2011,50(19):9230-9237
Although a variety of tetradentate ligands, 6,6'-bis(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2'-bipyridines (BTBPs), have been proved as effective ligands for selective extraction of Am(III) over Eu(III) experimentally, the origin of their selectivity is still an open question. To elucidate this question, the geometric and electronic structures of the actinide and lanthanide complexes with the BTBPs have been investigated systematically by using relativistic quantum chemistry calculations. We show herein that in 1:1 (metal:ligand) type complexes substitution of electron-donating groups to the BTBP molecule can enhance its coordination ability and thus the energetic stability of the formed Am(III) and Eu(III) complexes in the gas phase. According to our results, Eu(III) can coordinate to the BTBPs with higher stability in energy than Am(III), no matter whether there are nitrate ions in the inner-sphere complexes. The presence of nitrate ions leads to formation of the probable Am(III) and Eu(III) complexes, M(NO(3))(3)(H(2)O)(n) (M = Am, Eu), in nitric acid solutions. It has been found that the changes of Gibbs free energy play an important role for Am(III)/Eu(III) separation. In fact, the weaker complexing ability of Am(III) with nitrate ions and water molecules makes the decomposition of Am(NO(3))(3)(H(2)O)(4) more favorable in energy, which may thus increase the possibility of formation of Am(BTBPs)(NO(3))(3). Our work may shed light on the design of novel extractants for Am(III)/Eu(III) separation.  相似文献   

2.
New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6,6'-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)3] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)2(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cisi.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)2]3+ and [La(C5-BTBP)(NO3)3]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.  相似文献   

3.
A thermodynamic investigation has been performed to study the complexation of trivalent metal (M) ions (M = Am(III), Eu(III)) with tetradentate ligands (L), 6,6'-bis(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2'-bipyridines (BTBPs), by using relativistic quantum mechanical calculations. The structures and stabilities of the inner-sphere BTBPs complexes were explored in the presence of various counterions such as NO(3)(-), Cl(-), and ClO(4)(-). According to our calculations, Am(III) and Eu(III) can chelate eight or nine water molecules at most, whereas more stable species like M(NO(3))(3)(H(2)O)(4) tend to be formed in the presence of nitrate ions. The inner sphere of the BTBPs complexes can accommodate four water molecules or three nitrate ions based on our calculations, forming species such as [ML(H(2)O)(4)](3+) and ML(NO(3))(3). Compared with Eu(III) complexes, the Am(III) counterparts have obviously lower binding energies in both the gas phase and solution. In addition, the solvent effect significantly decreases the binding energies of the BTBPs complexes. It has been found that the complexing reactions, in which products and reactants possess the same or close number of nitrate ions, are more favorable for formation of the BTBPs complexes. In short, the reactions of M(NO(3))(3)(H(2)O)(4) → ML(NO(3))(3) and [M(NO(3))(H(2)O)(7)](2+) → [ML(2)(NO(3))](2+) are probably the dominant ones in the Am(III)/Eu(III) separation process.  相似文献   

4.
The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'?:?6',2'-terpyridine (CyMe(4)-hemi-BTBP) has been synthesized and its interactions with Am(III), U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UV absorption spectrophotometry, NMR studies and ESI-MS. Structures of 1:1 complexes with Eu(III), Ce(III) and the linear uranyl (UO(2)(2+)) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III) complex is higher. (1)H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1:1 complexes with Eu(III), Ce(III) and Yb(III), while both 1:1 and 1:2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2:2 helical complexes was formed with Cu(I), with a slight preference (1.4:1) for a single directional isomer. In contrast, a 1:1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III) from Ln(III) by quadridentate N-donor ligands.  相似文献   

5.
The highly selective nitrogen donor ligands CyMe4BTBP and CyMe4BTPhen where γ–irradiated under identical experimental conditions in 1–octanol with and without contact to nitric acid solution. Subsequently, solvent extraction experiments were carried out to evaluate the stability of the extractants against γ–radiation monitoring Am(III) and Eu(III) distribution ratios. Generally, decreasing distribution ratios with increasing absorbed dose were detected for both molecules. Furthermore, qualitative mass spectrometric analyses were performed and ligand concentrations were determined by HPLC-DAD after irradiation to investigate the radiolysis mechanism. An exponential decrease with increasing absorbed dose was observed for both ligands with a faster rate for CyMe4BTPhen. Main radiolysis products indicated the addition of one or more diluent molecules (1–octanol) to the ligand via prior production of α-hydroxyoctyl radicals from diluent radiolysis. The addition of nitric acid during the irradiation lead to a remarkable stabilization of the system, as the extraction of Am(III) and Eu(III) did not change significantly over the whole examined dose range. Quantification of the remaining ligand concentration on the other hand showed decreasing concentrations with increasing absorbed dose. The stabilization of D values is therefore explained by the formation of 1–octanol addition products which are also able to extract the studied metal ions.  相似文献   

6.
Solvent extraction and the so called BTBP class of ligands can be used for the separation of the actinides from the rest of used nuclear fuel. One troublesome co-extracting element in this separation is silver.Therefore, two different BTBP molecules, having different side groups have been investigated. It was shown that the silver distribution ratio is higher using the CyMe4-BTBP than theC2 -BTBP ligand. In additional experiments, it was shown that no water soluble silver complex is formed in the CyMe4 system and that the complex is one ligand/metal. No effect of varying the diluent/solvent was proven.  相似文献   

7.
The better selectivity of Am3+ over Eu3+ ion with N‐based CyMe4‐BTPhen compared to CyMe4‐BTBP for experimentally observed [ML2(NO3)]2+ complexes was demonstrated using scalar relativistic DFT in conjunction with Born‐Haber thermodynamic cycle and COSMO solvation model. The calculated free energy of extraction, ΔGext reveals strong dependence on the hydration free energies of Am3+ and Eu3+ ions and week dependence to the difference in Gibbs free energy of solvation of the ligand or metal‐ligand complexes. Further, for the first time, we have computed the effect of co‐anion species ([M(NO3)5]2–) on ΔGext of Am3+ and Eu3+ ions with CyMe4‐BTPhen and CyMe4‐BTBP, which adds a positive contribution and thus reduces the ΔGext. The calculated values of ΔΔΔGext (= ΔΔGext,L1 – ΔΔGext,L2, ΔΔGext = ΔGext,M1 – ΔGext,M2) can be used to avoid the very sensitive metal ion solvation energy, effect of co‐anionic species and thus provides a robust approach to determine the selectivity between two metal ions towards different competitive ligands. The natural population analysis (NPA), molecular orbital analysis, Mayer bond order analysis, and bond character analysis using Bader's quantum theory of atoms in molecules indicates slightly more covalency for complexes of Am3+ ion that are correlated to the experiental selectvity of Am3+ ion over Eu3+ ion and hence might be useful in the design and development of next generation extractants.  相似文献   

8.
The present work focuses on highly selective ligands for An(III)/Ln(III) separation: bis(triazinyl)bipyridines (BTBPs). By combining time-resolved laser-induced fluorescence spectroscopy, nanoelectrospray ionization mass spectrometry, vibronic sideband spectroscopy, and X-ray diffraction, we obtain a detailed picture of the structure and stoichiometry of the first coordination sphere of Eu(III)-BTBP complexes in an octanolic solution. The main focus is on the 1:2 complexes because extraction studies revealed that those are the species extracted into the organic phase. The investigations on europium(III) complexes of BTBP with different triazin alkylation revealed differences in the formed complexes due to the bulkiness of the ligands. Because of the vibronic sidebands in the fluorescence spectra, we were able to detect whether or not nitrate ligands are coordinated in the first coordination sphere of the Eu-BTBP complexes. In solution, less sterically demanding BTBP offers enough space for additional coordination of anions and/or solvent molecules to form 9-coordinated Eu-BTBP 1:2 complexes, while bulkier ligands tend to form 8-fold-coordinated structures. We also report the first crystal structure of a Ln-BTBP 1:2 complex and that of its 1:1 complex, both of which are 10-coordinated.  相似文献   

9.
Three new aryl amide type ligands, N-(phenyl)-2-(quinolin-8-yloxy)acetamide (L(1)), N-(benzyl)-2-(quinolin-8-yloxy)acetamide (L(2)) and N-(naphthalene-1-yl)-2-(quinolin-8-yloxy)acetamide (L(3)) were synthesized. With these ligands, three series of lanthanide(III) complexes were prepared: [Ln(L(1))(2)(NO(3))(2)]NO(3), [Ln(L(2))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O and [Ln(L(3))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O (Ln=La, Sm, Eu, Gd). The complexes were characterized by the elemental analyses, molar conductivity, (1)H NMR spectra, IR spectra and TG-DTA. The fluorescence properties of complexes in the solid state and the triplet state energies of the ligands were studied in detail, respectively. It was found that the Eu(III) complexes have bright red fluorescence in solid state. The energies of excited triplet state for the three ligands are 20325 cm(-1) (L(3)), 21053 cm(-1) (L(2)) and 22831 cm(-1) (L(1)), respectively. All the three ligands sensitize Eu(III) strongly and the order of the emission intensity for the Eu(III) complexes with the three ligands is L(3)>L(2)>L(1). It can be explained by the relative energy gap between the lowest triplet energy level of the ligand (T) and (5)D(1) of Eu(III). This means that the triplet energy level of the ligand is the chief factor, which dominates Eu(III) complexes luminescence.  相似文献   

10.
We report the first examples of hydrophilic 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) ligands, and their applications as actinide(iii) selective aqueous complexing agents. The combination of a hydrophobic diamide ligand in the organic phase and a hydrophilic tetrasulfonated bis-triazine ligand in the aqueous phase is able to separate Am(iii) from Eu(iii) by selective Am(iii) complex formation across a range of nitric acid concentrations with very high selectivities, and without the use of buffers. In contrast, disulfonated bis-triazine ligands are unable to separate Am(iii) from Eu(iii) in this system. The greater ability of the tetrasulfonated ligands to retain Am(iii) selectively in the aqueous phase than the corresponding disulfonated ligands appears to be due to the higher aqueous solubilities of the complexes of the tetrasulfonated ligands with Am(iii). The selectivities for Am(iii) complexation observed with hydrophilic tetrasulfonated bis-triazine ligands are in many cases far higher than those found with the polyaminocarboxylate ligands previously used as actinide-selective complexing agents, and are comparable to those found with the parent hydrophobic bis-triazine ligands. Thus we demonstrate a feasible alternative method to separate actinides from lanthanides than the widely studied approach of selective actinide extraction with hydrophobic bis-1,2,4-triazine ligands such as CyMe4-BTBP and CyMe4-BTPhen.  相似文献   

11.
In the field of nuclear waste management, the 6,6'-bis-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]-triazin-3-yl)-[2,2']-bipyridine (CyMe(4)BTBP) is a polycyclic N-based molecule eligible to remove actinides from spent nuclear fuel by liquid-liquid extraction processes. In such processes, the organic phase containing the extracting molecules will undergo hydrolysis and radiolysis, involving degradation products. The purpose of this work was to develop a normal phase chromatography (NP-HPLC) coupled to atmospherical pressure chemical ionisation-mass spectrometry (APCI-MS) method to separate and identify degradation products of CyMe(4)BTBP dissolved in octanol, submitted to HNO(3) hydrolysis. 1 mol L(-1) HNO(3) hydrolysis conditions were used regarding the selective actinides extraction (SANEX) process, while 3 mol L(-1) HNO(3) conditions were applied for the group actinide extraction (GANEX) process. The first step consisted in optimizing the chromatographic separation conditions using a diode array detection (DAD). Retention behavior of a non hydrolyzed mixture of N,N'-dimethyl-N,N'-dioctyl-hexyloxyethyl-malonamide (DMDOHEMA), a malonamide used in the SANEX process to increase the kinetic of extraction, and CyMe(4)BTBP were investigated on diol-, cyano-, and amino-bonded stationary phases using different mobile phase compositions. These latter were hexane with different polar modifiers, i.e. dioxane, isopropanol, ethanol and methylene chloride/methanol. The different retention processes in NP-HPLC were highlighted when using various stationary and mobile phases. The second step was the setting-up of the NP-HPLC-APCI-MS coupling and the use of the low-energy collision dissociation tandem mass spectrometry (CID-MS/MS) of the precursor protonated molecules that allowed the separation and the characterization of the main hydrolytic CyMe(4)BTBP degradation product under a 3 mol L(-1) HNO(3) concentration. Investigation of the CID-MS/MS fragmentation pattern was used to suggest the potential ways leading to this hydrolysis degradation product. This NP-HPLC-APCI-MS method development is described for the first time for the CyMe(4)BTBP and should provide separation methods regarding the analysis of polycyclic N-based extracting molecules and more generally for the investigation of the organic phase coming from liquid-liquid extraction processes used in nuclear fuel reprocessing.  相似文献   

12.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

13.
The synthesis, lanthanide complexation and solvent extraction of An(III) and Ln(III) radiotracers from nitric acid solutions by a pre-organized, phenanthroline-derived bis-triazine ligand CyMe4-BTPhen are described. It was found that the ligand separated Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and faster extraction kinetics compared to its 2,2’-bipyridine counterpart CyMe4-BTBP. The origins of the ligands extraction properties were established by a combination of solvent extraction experiments, X-ray crystallography, kinetics and surface tension measurements and lanthanide NMR spectroscopy.  相似文献   

14.
A new series of tripods were designed to form anion-responsive, luminescent lanthanide complexes. These tripods contain pyridine, thiazole, pyrazine, or quinoline chromophores combined with amide carbonyl oxygen and tertiary nitrogen atoms. Crystallographic and EXAFS studies of the 10-coordinated tripod-La(NO(3))(3) complexes revealed that each La(3+) cation was cooperatively coordinated by one tetradentate tripod and three bidentate NO(3)(-) anions in the crystal and in CH(3)CN. Quantum chemical calculations indicated that the aromatic nitrogen plays a significant role in lanthanide complexation. The experimentally determined stability constants of complexes of the tripod with La(NO(3))(3), Eu(NO(3))(3), and Tb(NO(3))(3) were in good agreement with the theoretically calculated interaction energies. Complexation of each tripod with lanthanide triflate gave a mixture of several lanthanide complex species. Interestingly, the addition of a coordinative NO(3)(-) or Cl(-) anion to the mixture significantly influenced the lanthanide complexation profiles. The particular combination of tripod and a luminescent Eu(3+) center gave anion-selective luminescence enhancements. Pyridine-containing tripods exhibited the highest NO(3)(-) anion-selective luminescence and thus permit naked-eye detection of the NO(3)(-) anion.  相似文献   

15.
New bifunctional and trifunctional organophosphorus ligands, 2-[(bis(2-ethylhexyl)phosphino)methyl]pyridine N,P-dioxide, DEH(MNOPO), and 2,6-bis[(bis(2-ethylhexyl)phosphino)methyl]pyridine N,P,P'-trioxide, TEH(NOPOPO), have been synthesized. In contrast with previously reported phenyl derivatives, the increased solubility of these ligands in normal paraffinic hydrocarbon solvents make them attractive reagents for actinide partitioning. While the bifunctional reagent DEH(MNOPO) interacts with Eu(3+) and Am(3+) comparatively weakly, the trifunctional TEH(NOPOPO) exhibits moderate to high ability to transfer the trisnitrato complexes of these ions into n-dodecane from acidic aqueous solutions. We report here the details of TEH(NOPOPO) and DEH(MNOPO) preparation and of their ability to extract HNO(3), Am(NO(3))(3), and Eu(NO(3))(3) into paraffinic hydrocarbons. The trifunctional TEH(NOPOPO) can extract up to two molecules of HNO(3). The dominant extracted species for both Am(NO(3))(3) and Eu(NO(3))(3) has two TEH(NOPOPO) ligands associated over the range of temperatures 10-40 degrees C. From the variation in the equilibrium coefficients for the phase transfer reactions as a function of temperature, we have calculated the enthalpies and entropies for extraction of HNO(3), Am(NO(3))(3), and Eu(NO(3))(3) into n-dodecane. Each metal nitrate is transferred into the organic phase in an exothermic process but opposed by an unfavorable (negative) entropy. The thermodynamic data are interpreted to indicate that the pyridine N-oxide is apparently a significantly weaker donor group for these metal ions than the phosphine oxides.  相似文献   

16.
A series of four tripodal phosphine oxide ligands, (OPR(2))(2)CHCH(2)POR(2) (1a-1d), and four mixed phosphine-phosphine oxide ligands, (OPR(2))(2)CHCH(2)PR(2) (3a-3d), were synthesized and coordinated to yttrium to produce Y(NO(3))(3)[(OPR(2))(2)CHCH(2)POR(2)] (2a-2d) and Y(NO(3))(3)[(OPR(2))(2)CHCH(2)PR(2)](OPPh(3)) (4a-4d) complexes. The previously reported ligand 1a and unknown phosphine oxide ligands 1b-1d were generated in an unprecedented trisubstitution reaction of bromoacetaldehyde diethyl acetal, while the novel partially reduced ligands 3a-3d were synthesized from 1a-1d according to a known literature protocol for the selective monoreduction of bisphosphine oxides. The neutral yttrium complexes 2a-2d are nine-coordinate and display a tricapped trigonal-prismatic geometry. Complexes 4a-4d are also neutral, nine-coordinate species and have a pendant phosphine functionality, which provides the potential to form bimetallic early-late transition-metal complexes. Additionally, yttrium complexes 2a-2d were activated with base and tested for the ring-opening polymerization of ε-caprolactone, but the results showed that base by itself was significantly more effective than the yttrium species investigated.  相似文献   

17.
Metal-ligand binding strength and selectivity result from antagonistic metal-ligand M-L attractions and ligand-ligand L-L repulsions. On the basis of quantum-mechanical (QM) calculations on lanthanide complexes, we show that this interplay determines the binding affinities in the gas phase. In the series of [ML3] complexes (M = La, Eu, and Yb) with negatively charged phosphoryl ligands L- = (MeO)2PO2- and Me2PS2-, the binding energies follow the order Yb3+ > Eu3+ > La3- for a given ligand, and (MeO)2PO2- > Me2PS2- for a given cation. However, adding a neutral LH ligand to [ML3] changes the order to Eu3+ > Yb3+ > La3+ for the oxygen ligand and La3+ > Eu3- > Yb3+ for the sulfur ligand, indicating that steric strain in the first coordination sphere is largest for the smallest cation and for sulfur binding sites. We investigated the question of additional hydration of the [ML3LH] complexes in aqueous solution by molecular dynamics (MD) simulations, using two sets of atomic charges. It was found that pairwise additive potentials overestimate the coordination and hydration numbers of the cations, while adding polarization energy terms for the ligands yields better agreement between QM and MD results and supports the concept of steric strain in the first coordination sphere.  相似文献   

18.
Two tripodal ligands, bis(2-benzimidazolylmethyl)(2-pyridylmethyl)amine (L(1)) and bis(2-pyridylmethyl)(2-benzimidazolylmethyl)amine (L(2)), were synthesized. With the third chromophoric ligand antipyrine (Antipy), three series of lanthanide(III) complexes were prepared: [LnL(1)(Antipy)(3)](ClO(4))(3) (series A), [LnL(1)(Antipy)Cl(H(2)O)(2)]Cl(2)(H(2)O)(2) (series B), and [LnL(2)(NO(3))(3)] (series C). The nitrate salt of the free ligand H(2)L(1).(NO(3))(2) and six complexes were structurally characterized: Pr(3+)A, Y(3+)A, Eu(3+)B, Eu(3+)C, Gd(3+)C and Tb(3+)C, in which the two A and three C complexes are isomorphous. Crystallographic studies showed that tripodal ligands L(1) and L(2) exhibited a tripodal coordination mode and formed 1:1 complexes with all lanthanide metal ions. The coordination numbers of the lanthanide metal ions for the A, B, and C complexes were 7, 8, and 10, respectively. Conductivity studies on the B and C complexes in methanol showed that, in the former, the coordinated Cl(-) dissociated to give 3:1 electrolytes and, in the latter, two coordinated NO(3)(-) ions dissociated to give 2:1 electrolytes. Detailed photophysical studies have been performed on the free ligands and their Gd(III), Eu(III), and Tb(III) complexes in several solvents. The results show a wide range in the emission properties of the complexes, which could be rationalized in terms of the coordination situation, the (3)LC level of the complexes, and the subtle variations in the steric properties of the ligands. In particular the Eu(3+)A and Tb(3+)A complexes, in which the central metal ions were wholly coordinated by chromophoric ligands of one L(1) and three antipyrine molecules, had relatively higher emission quantum yields than their corresponding B and C complexes.  相似文献   

19.
We report theoretical investigations on the effect of H --> F substitution in acetylacetonate ligands in order to understand why fluorination promotes the extraction of uranyl to supercritical CO(2) with a marked synergistic effect of tri-n-butyl phosphate "TBP". The neutral LH and deprotonated L(-) forms of the ligand, and the uranyl complexes UO(2)L(2) and UO(2)L(2)S (S = H(2)O versus trimethyl phosphate "TMP" which mimics TBP) are studied by quantum mechanics (QM) in the gas phase, whereas the ligands LH and their UO(2)L(2) and UO(2)L(2)S complexes are studied by molecular dynamics (MD) in SC-CO(2) solution as well as at a CO(2)-water interface. Several effects are found to favor F ligands over the H ligands. (i) First, intrinsically (in the gas phase), the complexation reaction 2 LH + UO(2)(2+) --> UO(2)L(2) is more exothermic for the F ligands, mainly due to their higher acidity, compared to the H ligands. (ii) The unsaturated UO(2)L(2) complexes with F ligands bind more strongly TMP than H(2)O, thus preferentially leading to the UO(2)L(2)(TMP) complex, more hydrophobic than UO(2)L(2)(H(2)O). (iii) Molecular dynamics simulations of SC-CO(2) solutions show that the F ligands and their UO(2)L(2) and UO(2)L(2)S complexes are better solvated than their H analogues, and that the UO(2)L(2)(TBP) complex with F ligands is the most CO(2)-philic. (iv) Concentrated solutions of UO(2)L(2)(TBP) complexes at the CO(2)-water interface display an equilibrium between adsorbed and extracted species, and the proportion of extracted species is larger with F- than with H- ligands, in agreement with experimental observations. Thus, TBP plays a dual synergistic role: its co-complexation by UO(2)L(2) yields a hydrophobic and CO(2)-philic complex suitable for extraction, whereas TBP in excess at the interface facilitates the migration of the complex to the supercritical phase.  相似文献   

20.
A ligand system containing three carbamoylmethylphosphine oxide (CMPO) moieties attached to a tripodal platform with a central nitrogen atom has been synthesized for metal complexation and extraction from neutral and nitric acid solutions. Liquid-liquid extractions performed for Ln(III), both from neutral and acidic media, show excellent extraction properties which exceeded those for the known mono- and di-CMPO derivatives as well as the related tripodands. A considerable enhancement of the DLn values was observed in the presence of IL ([bmim][Tf2N]) in the organic phase towards lanthanide ions from 3M HNO3 solutions. The protonation of the central amine nitrogen atom of the ligand 1 in the acidic media provides also the effective extraction of the perrhenate anionic complexes. The europium complexes formed by mono- and tris-CMPO ligands in the solid state, as well as Eu(III) and Tb(III) complexes generated in solutions, possess intensive luminescence at 300K  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号