首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We investigated optical bistability (OB) and the absorption properties of a weak probe field in a three-level Λ-type atomic system confined in a unidirectional ring cavity via incoherent pump field. We found that the threshold of OB and the probe field absorption can be controlled by the rate of incoherent pump field. No laser field was used in the pumping processes.  相似文献   

2.
The transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure is reported. The transient process of the system, which is induced by the external coherent coupling field, shows the property of no inverse gain. We find that the transient behavior of the probe field can be tuned by the change of tunneling barrier. Both the amplitude of the transient gain and the frequency of the oscillation can be affected by the lifetime broadening.  相似文献   

3.
We have proposed a scheme for double-beam optical bistability in a tunnel-coupled asymmetric double quantum-well driven by two optical fields circulating inside two independently unidirectional ring cavities. In contrast to the single-cavity case where single-photon saturated absorption and self Kerr-nonlinearity are dominant, the two-photon absorption and cross phase modulation can be enhanced via tunneling induced interference and have an important influence to the formation of bistability. The bistable behavior can be controlled effectively via the system parameters such as the input and detuning of control field, the detuning of the probe field, Fano interference strength and cooperation parameter. Furthermore, the proposed scheme has the ability to manipulate the outputs of two optical cavities simultaneously. Due to the flexible design of semiconductor quantum well, our scheme is more practical than atomic system, therefore it can be utilized to achieve dual all-optical switching which has application in optical communication and computing.  相似文献   

4.
We theoretically investigate the analog of electromagnetically induced absorption and parametric amplification in a hybrid opto-electromechanical system consisting of an optical cavity and a microwave cavity coupled to a common mechanical resonator. When the two cavity modes are driven by two pump fields, a weak probe beam is applied to the optical cavity to monitor the optical response of the hybrid system, which can be effectively controlled by adjusting the frequency and power of the two pump fields. We find that the analog of electromagnetically induced absorption and parametric amplification can appear in the probe transmission spectrum when one cavity is pumped on its red sideband and another is pumped on its blue sideband. These phenomena can find potential applications in optical switching and signal amplification in the quantum information process.  相似文献   

5.
A gain assisted large-scale tunable optical filter scheme via double selective optical pump induced dichroism is proposed. Theoretical model predicts that the filter provides a huge gain for the weak probe light, furthermore, its tunability can reach over gigahertz while its bandwidth is only several hundred megahertz, which is important for laser communication and lidar systems subjected to large Doppler shift.  相似文献   

6.
We propose a scheme for creating electromagnetically induced grating in a four-level double- Λ atomic system driven by a coupling field and an incoherent pump field. Owing to the incoherent pumping process, large refractivity accompanied with vanishing absorption or even gain across the probe field can be built up in the atoms, thus phase grating or gain-phase grating, which diffracts a probe light into different directions, can be formed with the help of a standing-wave coupling field. The diffraction efficiency of the gratings can be tuned by the coupling field intensity and the incoherent pump rate, hence the proposed gratings should be suitable for beam splitter and optical switching in optical communication and networking.  相似文献   

7.
The propagation of a weak probe field in a three-level quantum-dot molecule is investigated by employing the tunnel coupling. It is shown that in the absence of tunnel coupling, the propagation of light pulse is superluminal, similar to a simple two-level system. A high-resolution dip appears in optical spectra due to the presence of tunnel coupling. We show that this narrow dip leads to the subluminal light propagation with doublet absorption, so the group velocity of a light pulse can be controlled by interdot tunnel coupling. It is also demonstrated that by applying an indirect incoherent pumping field to the probe transition, the absorption doublet switches to the gain doublet and then the absorption-free superluminal light propagation is appeared.  相似文献   

8.
The optical properties of weak probe light based on quantum coherence and interference in Landau-quantized graphene nanostructure driven by two coherent fields and incoherent pumping field is investigated. The linear dynamical properties of the graphene by means of density matrix method and perturbation theory are discussed. It is found that under certain condition and for appropriate choosing the parameters of the medium, the absorption, dispersion, group index of the weak probe light can be controlled. Moreover, it is shown that by means of incoherent pumping field the superluminal light propagation in the system is accompanied by amplification to make sure that the probe field is amplified as it passes through the system. Moreover, it is observed that the probe amplification can be obtained in the presence or absence of population inversion by properly choosing of system’s parameters. We hope that these results may have useful in the future quantum communicational system and networks.  相似文献   

9.
The propagation of a weak probe field in a three-level quantum-dot molecule is investigated by employing the tunnel coupling. It is shown that in the absence of tunnel coupling, the propagation of light pulse is superluminal, similar to a simple two-level system. A high-resolution dip appears in optical spectra due to the presence of tunnel coupling. We show that this narrow dip leads to the subluminal light propagation with doublet absorption, so the group velocity of a light pulse can be controlled by interdot tunnel coupling. It is also demonstrated that by applying an indirect incoherent pumping field to the probe transition, the absorption doublet switches to the gain doublet and then the absorption-free superluminal light propagation is appeared.  相似文献   

10.
We discuss and analyze the absorption-amplification properties of a weak probe field in a typical four-level atomic system in the presence of an additional coherence term, the spontaneously generated coherence term. Theinfluences of the spontaneously generated coherence and a coherent pump field on the probe absorption (amplification)are investigated in detail. We show that the absorption of such a weak probe field can be dramatically enhanced dueto the presence of the spontaneously generated coherence. At the same time, the probe-absorption profile exhibitsthe double-peak structure and the probe-absorption peak gradually decreases as the pump intensity increases. On thecontrary, the amplification of such a weak probe field near the line center of the probe transition can be achieved byadjusting the coherent pump field intensity in the absence of the spontaneously generated coherence.  相似文献   

11.
We discuss and analyze the absorption properties of a weak probe field in a typical four-level atomic system in the presence of a spontaneously generated coherence (SGC) term. The influences of the SGC and a coherent pump field on the probe absorption-amplification are investigated. The results show that the absorption of such a weak probe field can be dramatically enhanced due to the SGC effect. At the same time, the probe-absorption profile exhibits a two-peak structure and the probe-absorption peak gradually decreases as the pump intensity increases. On the contrary, the amplification of such a weak probe field near the line center of the probe transition can be achieved by adjusting the coherent pump field intensity in the absence of the SGC effect.  相似文献   

12.
This paper investigates stimulated emission and absorption near resonance for a driven system of interacting two-level atoms. Microscopic kinetic equations for the density matrix elements of N-atom states including atomic motion are built, taking into account atom-field and atom-atom interactions. Analytical solutions are given for the resulting macroscopic equations in different limits, for a system composed of a strong coherent “pump” field and a weak counter-propagating “probe” field. It was shown that the existence of a dipole-dipole (long-range) interaction between atoms separated by distance less than the pump wave-length can cause the formation of periodic polarization and population structures (gratings in time and space) in the pumped medium without a probe field. The magnitude of pump induced population grating can have a strong dependence on the relation between the pump field detuning and the polarization decay rate. The “interaction” between pump and probe induced polarization/population gratings through a dipole-dipole interaction mechanism causes the absorption line shape asymmetry. Under certain conditions, this asymmetry is revealed in increasing probe gain for the “red”-shifted (relative to pump) probe and suppressing the gain for the “blue”-shifted probe field when pump is “red”-shifted relative to the ensemble averaged resonant frequency. The theoretical results are consistent with experimental data for the probe gain or absorption as the function of frequency and the dependance of the gain on atomic density for sodium vapor when the pump laser is tuned near the D 2 line. Here the dependance of gain on particle density was explained in the terms of the long-range interaction between the atoms.  相似文献   

13.
We investigate the two-dimensional gain and absorption of a weak probe field via two orthogonal standing-wave lasers in a four-level inverted-Y asymmetric quantum well system. We find that, due to the spatial-dependent quantum interference effect, the spatial distribution of the 2D gain and absorption spectra can be easily controlled by adjusting the system parameters. More importantly, the probe gain-absorption spectrum can be controlled at a particular position and the 2D localization effect is indeed achieved efficiently. Thus, our scheme shows the underlying probability for the formation of the 2D localization effect by using a QW structure.  相似文献   

14.
15.
We proposed a four-level system to explore the quantum interference effects on optical amplification.We found that the gain of the probe.including positions and values of gain peaks,can be adjusted by changing the coherent field and the incoherent pumping.At the same time,we can also modify the absorption profile of electromagnetically induced transparency by the incoherent pump.The results provide a method to flatten the gain of Erbium-doped fibre amplifiers.  相似文献   

16.
We study analytically the properties of the optical absorption and the spatial weak-light solitons in a quantum dot molecule system with the interdot tunneling coupling (ITC). It is shown that, for the linear case, there exists tunneling induced transparency (TIT) in the context of a weak ITC, while the TIT can be replaced by Autler-Townes splitting in the presence of a strong ITC. For the nonlinear case, it is probable to realize the spatial optical solitons even under weak light intensity. Interestingly, we find that there appears transformation behavior between the bright and dark solitons by properly turning both the ITC strength and the detuning of the probe field. Meanwhile, the transformation condition of the bright and dark solitons is obtained. Additionally it is also found that the amplitude of the solitons first descends and then rises with the increasing of ITC strength. Our results may have potential applications for nonlinear optical experiments and optical telecommunication engineering in solid systems.  相似文献   

17.
李昂 《发光学报》2012,33(4):433-439
在微波场闭合的三能级Lambda系统中计算了弱探测场的吸收和色散特性,发现闭合原子系统中的量子干涉导致弱探测场的吸收和色散特性依赖于施加场的相对位相。通过调节相对位相,获得了大的无反转增益和零吸收的高折射率。在三光子非共振的情况下,探测增益和吸收呈现随时间的振荡行为。  相似文献   

18.
The absorption/gain spectrum of a weak probe field is theoretically analyzed for an atomic three-level Λ system driven by a strong pump field and perturbed by collisions with buffer-gas atoms. It is assumed that both pump and probe drive the same transition. When the dark state is sufficiently long lived, the probe spectrum exhibits an extremely narrow (possibly subnatural-width) resonance. It is shown that coherence-preserving collisions drastically (both qualitatively and quantitatively) change the probe absorption spectrum even at a low collision frequency, when Dicke narrowing is negligible. Strong coherence effects on the resonance structure at low gas pressures is explained by a change in refractive index due to coherence-preserving collisions for particles in the resonant velocity group.  相似文献   

19.
We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.  相似文献   

20.
In this paper we investigate the optical properties of an open four-level tripod atomic system driven by an elliptically polarized probe field in the presence of the external magnetic field and compare its properties with the corresponding closed system.Our result reveals that absorption,dispersion and group velocity of probe field can be manipulated by adjusting the phase difference between the two circularly polarized components of a single coherent field,magnetic field and cavity parameters i.e.the atomic exit rate from cavity and atomic injection rates.We show that the system can exhibit multiple electromagnetically induced transparency windows in the presence of the external magnetic field.The numerical result shows that the probe field in the open system can be amplified by appropriate choice of cavity parameters,while in the closed system with introduce appropriate phase difference between fields the probe field can be enhanced.Also it is shown that the group velocity of light pulse can be controlled by external magnetic field,relative phase of applied fields and cavity parameters.By changing the parameters the group velocity of light pulse changes from subluminal to superluminal light propagation and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号