首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polyvinyl alcohol anion exchange resin composite membrane was functionalized with CoOOH for use in direct borohydride fuel cells (DBFCs) and is detailed in this report. The CoOOH-functionalized membrane has a higher ionic conductivity and a lower borohydride ion permeability than the membrane without CoOOH. The DBFCs with the CoOOH-functionalized membrane achieved better performance, such as a power density peak at 144 mW·cm 2 at 30 °C, than did those without CoOOH. Such performance improvement is due to CoOOH functionalization, whereby Co species reduce the crossover of the borohydride ion while maintaining high conductivity for hydroxyl species. With the introduction of the Co species, the conductivity-permeability trade-off dilemma in traditional anion exchange membranes is avoided. Therefore, the functionalization of the membrane helps to elucidate the development of anion exchange membrane fuel cells.  相似文献   

2.
Sulfur doped reduced graphene oxide (S-rGO) is investigated for catalytic activity towards the oxygen reduction reaction (ORR) in acidic and alkaline electrolytes. X-ray photoelectron spectroscopy shows that sulfur in S-rGO is predominantly integrated as thiophene motifs within graphene sheets. The overall sulfur content is determined to be approximately 2.2 at.% (elemental analysis). The catalytic activity of S-rGO towards the ORR is investigated by both rotating disc electrode (RDE) and polymer electrolyte fuel cell (PEFC) measurements. RDE measurements reveal onset potentials of 0.3 V and 0.74 V (vs. RHE) in acidic and alkaline electrolyte, respectively. In a solid electrolyte fuel cell with S-rGO as cathode material, this is reflected in an open circuit voltage of 0.37 V and 0.78 V and a maximum power density of 1.19 mW/cm2 and 2.38 mW/cm2 in acidic and alkaline polymer electrolyte, respectively. This is the first report investigating the catalytic activity of a sulfur doped carbon material in both acidic and alkaline liquid electrolyte, as well as in both proton and anion exchange polymer electrolyte fuel cells.  相似文献   

3.
Nonenzymatic glucose fuel cells were prepared by using a polymer electrolyte membrane and Pt-based metal catalysts. A fuel cell with a cation exchange membrane (CEM), which is often used for conventional polymer electrolyte fuel cells, shows an open circuit voltage (OCV) of 0.86 V and a maximum power density (Pmax) of 1.5 mW cm?2 with 0.5 M d-glucose and humidified O2 at room temperature. The performance significantly increased to show an OCV of 0.97 V and Pmax of 20 mW cm?2 with 0.5 M d-glucose in 0.5 M KOH solution when the electrolyte membrane was changed from a CEM to an anion exchange membrane (AEM). This is due to the superior catalytic activity for both glucose oxidation and oxygen reduction in alkaline medium than in acidic medium. The anodic reaction of the fuel cell can be estimated to be the oxidation of glucose to gluconic acid via a two-electron process under these experimental conditions. The crossover of glucose through an electrolyte membrane was negligibly small compared with methanol and may not represent a serious technical problem due to the cross-reaction.  相似文献   

4.
Y-doped BaZrO3 (BZY) electrolyte films are successfully fabricated by utilizing the driving force from the anode substrate, aiming to circumvent the refractory nature of BZY materials. The BZY electrolyte film on the high shrinkage anode becomes dense after sintering even though no sintering aid is added, while the BZY electrolyte remains porous on the conventional anode substrate after the same treatment. The resulting BZY electrolyte shows a high conductivity of 4.5 × 10 3 S cm 1 at 600 °C, which is 2 to 20 times higher than that for most of BZY electrolyte films in previous reports. In addition, the fuel cell with this BZY electrolyte generates a high power output of 267 mW cm 2 at 600 °C. These results suggest the strategy presented in this study provides a promising way to prepare BZY electrolyte films for fuel cell applications.  相似文献   

5.
We report the preparation of phosphoric acid doped poly(2,5-benzimidazole) (ABPBI) membranes for PEMFC by simultaneously doping and casting from a poly(2,5-benzimidazole)/phosphoric acid/methanesulfonic acid (MSA) solution. The evaporation of MSA yields a very homogeneous membrane having a better controlled composition, avoiding the use of solvent-intensive procedures. Membranes have been prepared with contents of up to 3.0H3PO4 molecules per ABPBI repeating unit. These membranes achieve a maximum conductivity of 1.5 × 10−2 S cm−1 at temperatures as high as 180 °C in dry conditions. These ABPBI membranes are more conveniently prepared than those conventionally formed and doped in separate steps while featuring comparable conductivities (ABPBI × 2.7H3PO4 prepared by the soaking method showed a conductivity of 2.5 × 10−2 S cm−1 at 180 °C in dry conditions).  相似文献   

6.
Lithium lanthanoid silicates find importance as a solid electrolyte in high temperature lithium batteries in view of its high ionic conductivity at high temperatures. An first ever attempt is made to synthesis a new high temperature solid electrolyte viz., lithium samarium holmium silicate by sol–gel process and it has been characterized by thermal analysis (TGA–DTA), X-ray diffraction (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Lithium ion conductivity of 0.8087 × 10−7 Ω−1 cm−1 at 25 °C was obtained and it increases with increasing temperature. For the first time a highest conductivity of 0.1095 × 10−2 Ω−1 cm−1 was obtained at 850 °C which is high compared to other high temperature lithium battery solid electrolytes.  相似文献   

7.
A direct borohydride fuel cell with a Pd/Ir catalysed microfibrous carbon cathode and a gold-catalysed microporous carbon cloth anode is reported. The fuel and oxidant were NaBH4 and H2O2, at concentrations within the range of 0.1–2.0 mol dm−3 and 0.05–0.45 mol dm−3, respectively. Different combinations of these reactants were examined at 10, 25 and 42 °C. At constant current density between 0 and 113 mA cm−2, the Pd/Ir coated microfibrous carbon electrode proved more active for the reduction of peroxide ion than a platinised-carbon one. The maximum power density achieved was 78 mW cm−2 at a current density of 71 mA cm−2 and a cell voltage of 1.09 V.  相似文献   

8.
In this study a process has been introduced to replace traditional liquid or solid electrolyte coatings on dye-sensitized photoelectrode in solar cells. This process has more efficient diffusion of electrolyte, hence higher sensitivity. Better interfacial contact between polymer electrolyte and TiO2 photoelectrode had improved electrochemical response and ionic conductivity of cell. Conductivity of this electrode was 9.33 × 10−3 S cm−1 (at room temperature), which is much higher than the using traditional process for addition of electrolytes. It has 0.68 V open-circuit voltage and 3.19 mA cm−2 short-circuit current density. Energy conversion efficiency of this cell was about 37% higher than the cell developed with traditional processes under constant light intensity (45 mW cm−2).  相似文献   

9.
A new photoswitchable electrode triggered by a brief light signal was fabricated by depositing an azobenzene-containing copolymer on an indium tin oxide substrate decorated with gold nanoparticles. The polymer formed a compact, complete thin film on the electrode surface using the Langmuir–Schaefer technique and offered reversible and stable switching performance. The conductivity and hydrophilicity of the electrode changed under UV/visible light due to the photoisomerization of the azobenzene moieties in the polymer film, influencing electron transfer and mass transport at the electrode. The electrochemical characterization demonstrated that the electrode exhibited reversibly switchable electrochemical behavior. In its active state, the as-prepared electrode possessed efficient electrocatalytic capability towards uric acid oxidation with a maximum anodic current density of 0.97 mA·cm 2. The uric acid/air fuel cell assembled from the photo-triggered anode and a Pt/C-modified cathode operated with an open circuit voltage of 0.12 V and a maximum power density of 41.33 μW·cm 2. The cell exhibited reversible switching performance (four cycles) and high stability: after one month the power output was 94.2% of the original maximum value.  相似文献   

10.
Glucose oxidase and laccase immobilized at multiwalled carbon nanotubes-ionic liquid gel modified electrodes are used as the catalysts of anode and cathode of biofuel cells (BFCs), respectively. The BFC based on glucose and air is proposed. When ferrocene monocarboxylic acid is adopted as the mediator of anode, the power output of the BFC is ca. 4.1 μW (power density ca. 10.0 μW cm−2), which is higher than the value of 2.7 μW (power density ca. 6.6 μW cm−2) by taking ferrocene dicarboxylic acid as the mediator. This implies that the mediator with formal potential closing to that of the enzyme does improve the power output. Furthermore, the power output of the BFC is greatly improved by taking grape juice as the fuel of anode rather than glucose. This system also indicates that grape juice as a fuel of the BFC not only is feasible and can also enhances the power output of the BFCs. Besides, it greatly lowers the cost and simplifies the preparation procedure of the BFCs, making the BFC towards “green” bioenergy.  相似文献   

11.
The mineral ettringite has been studied using a number of techniques, including XRD, SEM with EDX, thermogravimetry and vibrational spectroscopy. The mineral proved to be composed of 53% of ettringite and 47% of thaumasite in a solid solution. Thermogravimetry shows a mass loss of 46.2% up to 1000 °C. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1072 cm−1 attributed to a carbonate symmetric stretching mode, confirming the presence of thaumasite. The observation of multiple bands in the ν4 spectral region between 700 and 550 cm−1 offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3629 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3487 cm−1 to water stretching bands. Vibrational spectroscopy enables an assessment of the molecular structure of natural ettringite to be made.  相似文献   

12.
The separation of deuterium from a hydrogen–deuterium mixture was carried out using an alkaline membrane fuel cell (AMFC) with a Pt catalyst. This novel use of an AMFC to separate deuterium from a mixture of H2 and D2 was demonstrated by the production of deuterium-enriched water during power generation by the AMFC. The deuterium separation factor increased with output current (i) to a maximum value of 1.64 attained at i = 30 mA cm 2.  相似文献   

13.
In order to prevent the vanadium crossover and preferential water transfer in all-vanadium redox flow battery (VRFB), three methods – electrolyte soaking, oxidation polymerisation and Electrodeposition, were used to modify Nafion 117 membranes using pyrrole. The surface of the modified membranes was uniform and even, and the membranes were characterised in terms of morphology, membrane area resistance, vanadium permeability and water transfer property. The properties of all the modified membranes were improved greatly. The membranes modified by Electrodeposition showed a best combination of the membrane resistance, vanadium permeability and water transfer property, the experimental results showed that the V(IV) ion permeability of polypyrrole modified Nafion membranes by Electrodeposition at the conditions of 0.025 mA cm−2 and 0 °C for 60 min reduced more than 5 times from 2.87 × 10−6 cm2 min−1 to 5.0 × 10−7cm2 min−1, and the water transfer property decreased more than 3 times from 0.72 ml/72 h cm2 to 0.22 ml/72 h cm2. All above properties made the modified Nafion membranes more applicative in the VRFB system. This paper also reported other methods for Nafion membrane modification and the influences of the deposition conditions on the properties of the membrane selectivity and water transfer.  相似文献   

14.
Cobalt-free perovskite oxide La0.5Sr0.5Fe0.8Cu0.2O3  δ (LSFC) was applied as both anode and cathode for symmetrical solid oxide fuel cells (SSOFCs). The LSFC shows a reversible transition between a cubic perovskite phase in air and a mixture of SrFeLaO4, a K2NiF4-type layered perovskite oxide, metallic Cu and LaFeO3 in reducing atmosphere at elevated temperature. The average thermal expansion coefficient of LSFC in air is 17.7 × 10 6 K 1 at 25 °C to 900 °C. By adopting LSFC as initial electrodes to fabricate electrolyte supported SSOFCs, the cells generate maximum power output of 1054, 795 and 577 mW cm 2 with humidified H2 fuel (~ 3% H2O) and 895, 721 and 482 mW cm 2 with humidified syngas fuel (H2:CO = 1:1) at 900, 850 and 800 °C, respectively. Moreover, the cell with humidified H2 fuel demonstrates a reasonable stability at 800 °C under 0.7 V for 100 h.  相似文献   

15.
A novel, low-cost proton-conducting semi-IPN has been successfully prepared from PVA/PAMPS blends by incorporating poly(ethylene glycol)bis(carboxymethyl)ether (PEGBCME) as a novel plasticizer. Although, the polymer is based on a relatively low content of PAMPS as a component of ion conducting sites, the resulting semi-IPN exhibited high proton conductivity (0.1 S cm−1) at 25 °C, which afforded a higher power density of 51 mW cm−2 at 80 °C. A striking feature is that a long-term initial performance is achieved with a 130 h of stable fuel cell operation in DMFC mode due to effectively suppressed methanol crossover. This is a new record for a fully hydrocarbon membrane in DMFC, seeing that the PVA–PAMPS proton-conducting semi-IPNs are made simply of aliphatic skeletons.  相似文献   

16.
A systematic study on the electrocatalytic properties of Pt nanoparticles supported on nitrobenzene-modified graphene (Pt-NB/G) as catalyst for oxygen reduction reaction (ORR) in alkaline solution was performed. Graphene nanosheets were spontaneously grafted with nitrophenyl groups using 4-nitrobenzenediazonium salt. The electrocatalytic activity towards the ORR and stability of the prepared catalysts in 0.1 M KOH solution have been studied and compared with that of the commercial Pt/C catalyst. The results obtained show that the NB-modified graphene nanosheets can be good Pt catalyst support with high stability and excellent electrocatalytic properties. The specific activity of Pt-NB/G for O2 reduction was 0.184 mA cm−2, which is very close to that obtained for commercial 20 wt% Pt/C catalyst (0.214 mA cm−2) at 0.9 V vs. RHE. The Pt-NB/G hybrid material promotes a four-electron reduction of oxygen and can be used as a promising cathode catalyst in alkaline fuel cells.  相似文献   

17.
Solid conducting biodegradable composite membranes have shown to enhance nerve regeneration. However, few efforts have been directed toward porous conducting biodegradable composite membranes for the same purpose. In this study, we have fabricated some porous conducting poly(dl-lactide) composite membranes which can be used for the biodegradable nerve conduits. The porous poly(dl-lactide) membranes were first prepared through a phase separation method, and then they were incorporated with polypyrrole to produce porous conducting composite membranes by polymerizing pyrrole monomer in gas phase using FeCl3 as oxidant. The preparation conditions were optimized to obtain membranes with controlled pore size and porosity. The direct current conductivity of composite membrane was investigated using standard four-point technique. The effects of polymerization time and the concentration of oxidant on the conductivity of the composite membrane were examined. Under optimized polymerization conditions, some composite membranes showed a conductivity close to 10−3 S cm−1 with a lower polypyrrole loading between 2 and 3 wt.%. A consecutive degradation in Ringer's solution at 37 °C indicated that the conductivity of composite membrane did not exhibit significant changes until 9 weeks although a noticeable weight loss of the composite membrane could be seen since the end of the second week.  相似文献   

18.
Changes in microbial fuel cell (MFC) architecture, materials, and solution chemistry can be used to increase power generation by microbial fuel cells (MFCs). It is shown here that using a phosphate buffer to increase solution conductivity, and ammonia gas treatment of a carbon cloth anode substantially increased the surface charge of the electrode (from 0.38 to 3.99 meq m−2), and improved MFC performance. Power increased to 1640 mW m−2 (96 W m−3) using a phosphate buffer, and further to 1970 mW m−2 (115 W m−3) using an ammonia-treated electrode. The combined effects of these two treatments boosted power production by 48% compared to previous results using this air-cathode MFC. In addition, the start up time of an MFC was reduced by 50%.  相似文献   

19.
The availability of stable polymeric membranes with good proton conductivity at medium temperatures is very important for the development of methanol PEM fuel cells. In view of this application, a systematic investigation of the conductivity of Nafion 117 and sulfonated polyether ether ketone (S-PEEK) membranes was performed as a function of relative humidity (r.h.) in a wide range of temperature (80–160°C). The occurrence of swelling/softening phenomena at high r.h. values prevented conductivity determinations above certain temperatures. Nevertheless, when r.h. was maintained at values lower than 80%, measurements were possible up to 160°C. The results showed that Nafion is a better proton conductor than S-PEEK at low r.h. values, especially at temperatures lower than 120°C. The differences in conductivity were, however, leveled out with the increasing r.h. and temperature. While at 100°C and 35% r.h. the conductivity of S-PEEK 2.48 was about 30 times lower than the conductivity of Nafion, both membranes reached a comparable conductivity (4×10−2 S cm−1) at 160°C and 75% r.h. The effect of superacidity and crystallization of the polymers on the conductivity, as well as the possibility of using Nafion and S-PEEK membranes in medium temperature fuel cells, are discussed.  相似文献   

20.
When complexed with alkaline such as potassium hydroxide, sodium hydroxide or lithium hydroxide, films (40 μm thick) of polybenzimidazole (PBI) show conductivity in the 5 × 10−5–10−1 S/cm−1 range, depending on the type of alkali, the time of immersion in the corresponding base bath and the temperature of immersion. It has been shown that PBI has a remarkable capacity to concentrate KOH, even in an alkaline bath of concentration 3 M. The highest conductivity of KOH-doped PBI (9×10−2 S cm−1) at 25°C obtained in this work is higher than the we had obtained previously as optimum values for H2SO4-doped PBI (5 × 10−2 S cm−1 at 25°C) and H3PO4-doped PBI ( 2 × 10−3 S cm−1 at 25°C). PEMFCs based on an alkali-doped PBI membrane were demonstrated, and their characteristics exhibited the same performance as those of PEMFCs based on Nafion® 117. Their development is currently under active investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号