首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use tight-binding model including curvature effects to study the effect of transverse electric field on the persistent currents of armchair and zigzag carbon nanotubes (ACNTs and ZCNTs) threaded by longitudinal magnetic field. With increasing field strength, ZCNTs could undergo zero-gap transitions, whereas metallic ACNTs are not affected. The current amplitude, without electric field, in a (m,mm,m) ACNT is inversely proportional to m2m2. However, for a (m,0m,0) ZCNT, it is determined by the modulus of m with respect to three. Electric field could enhance the current amplitude of an ACNT, but could not change its magnetism. As for a ZCNT, both electric-field-distorted electronic states and zero-gap transitions determine a change in magnetism that is pronouncedly related with nanotube's geometry.  相似文献   

2.
The structural and electronic properties of Y 2C3 superconductor under different external pressures were calculated by employing the first-principles method. This shows that the lattice constants as well as the lengths of C-C dimers decrease with the pressure. Results of band structure calculations indicate that the Fermi level advances to the bonding zone with an increase in pressure; meantime, the valence and conduction bands intersect more deeply with the Fermi level. Moreover, the Fermi level is found to shift from the valley bottom of the density of states (DOS) curve to the shoulder, which means an increase in N(EF), and therefore the critical temperature, Tc. The calculations verify that the critical temperature is directly related to the electronic structure.  相似文献   

3.
We calculate the electronic specific heat of pure graphite in the ultraquantum limit region for fields between 60 and 200 kG, at very low temperatures, using the Slonczewski-Weiss band model with values of the energy-band parameters which are in agreement with recent magneto-replection experiments. The effect of trigonal warping of the Fermi surfaces associated with the parameter γ3 is neglected in the calculation. Our results show that, for most of the range of fields considered, the electronic specific heat C is very nearly proportional to both the magnetic field strength H and the temperature T, according to the relation C ≈ αHT with a coefficient α of about 0.091 μJ/g-at. K2kG. The results also indicate that, at the upper end of the magnetic field range, the C(H) curves, at a given T, depart slightly and progressively from linearity with increasing H, essentially as a result of the variation of the Fermi energy with magnetic field.  相似文献   

4.
We report LDA calculated band structure, densities of states and Fermi surfaces for recently discovered Pt-pnictide superconductors APt3P (A = Ca, Sr, La), confirming their multiple band nature. Electronic structure is essentially three dimensional, in contrast to Fe pnictides and chalcogenides. LDA calculated Sommerfeld coefficient agrees rather well with experimental data, leaving little space for very strong coupling super-conductivity, suggested by experimental data on specific heat of SrPt3P. Elementary estimates show, that the values of critical temperature can be explained by rather weak or moderately strong coupling, while the decrease in superconducting transition temperature T c from Sr to La compound can be explained by corresponding decrease in total density of states at the Fermi level N(E F). The shape of the density of states near the Fermi level suggests that in SrPt3P electron doping (such as replacement Sr by La) decreases N(E F) and T c , while hole doping (e.g., partial replacement of Sr with K, Rb or Cs, if possible) would increase N(E F) and possibly T c .  相似文献   

5.
The upper critical field Hc2(T) and the specific heat jump ΔC(Tc) are calculated for Cs0.1WO2.9F0.1 using a two-band model. The model parameters are obtained by adjusting the theoretical Hc2(T) values to experimental results. The model calculation predicts an anomalous specific heat jump ΔC as a function of the inverse relation Tc(H).  相似文献   

6.
We study an impurity atom, on which two-body forces are important, dissolved in a metal, where they are negligible. With the aid of the well-known boson excitation spectrum of the electronic Fermi sea, we predict the low-energy effects of one- and two-body potentials on the impurity, in the nonmagnetic regime. We obtain for the first time exact expressions for the cutoff independent contributions to the specific heat and paramagnetic susceptibility, the spectral amplitudes or one-electron density of states on the impurity, and the scattering cross-section. The entire spectrum of manybody eigenstates is explicitly obtained. The onset of a local magnetic moment appears as a sudden breakdown of the model Hamiltonian, and occurs when the two-body potential exceeds a critical value Uc which is O(EF) in magnitude. A study of the renormalization of the interaction parameters terminates the paper.  相似文献   

7.
The electronic band structure of La2CuO4 is performed using self-consistent linear muffin-tin orbital method. The 17 band complex is found to arise mainly from the overlap between Cu-3d and O-2p wavefunctions. The calculated density of states at the Fermi energy (N E F), the conduction band-width and the electronic specific heat coefficient are given.  相似文献   

8.
It is shown that within the Hartree-Fock approximation the electron gas in the quantum limit of a strong magnetic field has an instability as the temperature is lowered toward the charge density wave state with an wave-vector which has finite components in the directions not only parallel but also perpendicular to the field. The critical temperature, Tc, is estimated under the assumption of Tc??F?ωc, where ?F and ωc are the Fermi energy of the non-interacting system and the cyclotron frequency respectively.  相似文献   

9.
The Bardeen-Cooper-Schrieffer (BCS) gap equation is solved analytically in one, two and three dimensions, for temperatures close to zero andT c. We work in the weak coupling limit, but allow the interaction widthνħω m/E F to lie in the interval (0, ∞) Here,ħω m is the maximum energy of a force-mediating boson, andE F denotes the Fermi energy. We obtain expressions forT c and ΔC, the jump in the electronic specific heat acrossT=T c, in the limitsν≪1 (the usual phonon pairing) andν>1 (non-phononic pairing). This enables us to see howT c scales with the mediating boson cut off. Our results predict a larger jump in the specific heat for the caseν>1, compared toν≪1. We also briefly touch upon the role of a van Hove singularity in the density of states.  相似文献   

10.
We calculate the electronic specific heat of pure graphite in the ultraquantum limit region for fields between 60 and 200 kG, at very low temperatures, using the Slonczewski-Weiss band model with values of the energy-band parameters which are in agreement with recent magneto-reflection experiments. The effect of trigonal warping of the Fermi surfaces associated with the parameter γ3 is neglected in the calculation. Our results show that, for most of the range of fields considered, the electronic specific heat C is very nearly proportional to both the magnetic field strength H and the temperature T, according to the relation CαHT with a coefficient α of about 0.091 μJ/g-at. K2kG. The results also indicate that, at the upper end of the magnetic field range, the C(H) curves, at a given T, depart progressively, though slightly, from linearity with increasing H.  相似文献   

11.
We have studied the changes in the electronic structure and the superconducting transition temperature Tc of Mg(B1−xCx)2 alloys as a function of x with 0≤x≤0.3. Our density-functional-based approach uses the coherent-potential approximation to describe the effects of disorder, the Gaspari-Gyorffy formalism to estimate the electron-phonon matrix elements and the Allen-Dynes equation to calculate Tc in these alloys. We find that the changes in the electronic structure of Mg(B1−xCx)2 alloys, especially near the Fermi energy EF, come mainly from the outward movement of EF with increasing x, and the effects of disorder in the B plane are small. In particular, our results show a sharp decline in both B and C px(y) states for 0.2≤x≤0.3. Our calculated variation in Tc of Mg(B1−xCx)2 alloys is in qualitative agreement with the experiments.  相似文献   

12.
A theory of the thermodynamic properties of a two-band superconductor with a low carrier density is developed; it is based on a phonon superconductivity mechanism with a strong electron-phonon coupling. This theory can describe the variation of the critical temperature T c, the energy gaps Δ1 and Δ2, and the relative electronic specific heat jump (C S ? C N)/C N at T = T c with the carrier density in the compound MgB2 when substitutional impurities of various valences are introduced into this system. The values of T c, Δ1, and Δ2 are shown to decrease as this compound is doped by electrons and to remain constant (or almost constant) as it is doped by holes. This behavior follows from the mechanism of filling the σ and π energy bands, which overlap at the Fermi surface. The theory agrees qualitatively with experimental data. This agreement is found to be better when intra-and interband electron scattering by an impurity potential is taken into account.  相似文献   

13.
Measurements of the electronic specific heat in the normal and superconducting state of 15 superconducting binary complex phases of theσ- andχ-structure are presented. The alloys have been prepared under high vacuum in an electron-beam melting apparatus described in detail. In the investigated range between 6 and 7 valence-electrons, the obvious correlation betweenT c, the superconducting critical temperature, andγ, the coefficient of the electronic specific heat, leads to agreement with the empirical rules, found byMatthias. Recently,Morel andAnderson andGarland have calculated the values of the deviation of the normal isotope-effect. With these values it is possible to relate the observedT c-data for most of the transition metal alloys investigated so far to the density of states at the Fermi level and to a systematically varying electron-phonon interaction parameter. In the superconducting state, an exponential dependence of the electronic specific heat on 1/T is found in the range betweenT c/2 andT c/6. However the parameters are somewhat different from those predicted by theory. The values ofγ observed also account for the lack of any correlation between the total magnetic susceptibility and the superconducting critical temperature for these phases.  相似文献   

14.
The electronic band structure and magnetic properties of iron phthalocyanine (FePc) monolayer were investigated by using the first-principles all-electron full-potential linearized augmented plane wave energy band method. It is found that the ferromagnetic FePc monolayer is energetically more stable than the paramagnetic one. The exchange interaction, which splits the majority and minority bands, influences strongly on the electronic structure near the Fermi level (EF). Magnetic moment of the central Fe atom is calculated to 1.95 μB. The range of the positive polarization of Fe site is larger in the out-of-plane than in the in-plane direction. The FePc ligand remains paramagnetic. The presence of states at EF indicates the metallic character of FePc monolayer both for the paramagnetic and ferromagnetic states. However, the large density of states at EF of the majority spins in the ferromagnetic state is expected to cause a phase transition to insulating antiferromagnetic state from the metallic ferromagnetic one.  相似文献   

15.
In this work we present the results of comparative XPS and PYS studies of electronic properties of the space charge layer of the L-CVD SnO2 thin films after air exposure and subsequent UHV annealing at 400 °C, with a special emphasis on the interface Fermi level position.From the centre of gravity of binding energy of the main XPS Sn 3d5/2 line the interface Fermi level position EF − Ev in the band gap has been determined. It was in a good correlation with the value estimated from the offset of valence band region of the XPS spectrum, as well as from the photoemission yield spectroscopy (PYS) measurements. Moreover, from the valence band region of the XPS spectrum and PYS spectrum two different types of filled electronic band gap states of the L-CVD SnO2 thin films have been derived, located at 6 and 3 eV with respect to the Fermi level.  相似文献   

16.
The specific heat of the novel high temperature superconductor Y0.7Th0.3C1.58 (Tc = 17.0 K) has been measured between 4 and 22 K. Unlike the other known high temperature superconductors (Tc > 16 K) which have either an A-15 or a NaCl-type structure, this material forms in the b.c.c., Pu2C3-type, structure. The Debye temperature, θD, is 346 K and the linear term coefficient, γ, of the specific heat has the value 4.66 mJ/mole-K2. Thus the electronic density of states, N(0), which is proportional to γ, is quite low. The energy gap, 2Δ/kTc, on the other hand has an anomalously high value of 5.8. Comparisons between these parameters of Y0.7Th0.3C1.58 and those for some A-15 and NaCl-type superconductors are made.  相似文献   

17.
We present an overview of the electronic properties of iron arsenic high temperature superconductors with emphasis on low energy band dispersion, Fermi surface and superconducting gap. ARPES data is compared with full-potential linearized plane wave (FLAPW) calculations. We focus on single layer NdFeAsO0.9F0.1 (R1111) and two layer Ba1?xKxFe2As2 (B122) compounds. We find general similarities between experimental data and calculations in terms of character of Fermi surface pockets, and overall band dispersion. We also find a number of differences in details of the shape and size of the Fermi surfaces as well as the exact energy location of the bands, which indicate that magnetic interaction and ordering significantly affects the electronic properties of these materials. The Fermi surface consists of several hole pockets centered at Γ and electron pockets located in zone corners. The size and shape of the Fermi surface changes significantly with doping. Emergence of a coherent peak below the critical temperature Tc and diminished spectral weight at the chemical potential above Tc closely resembles the spectral characteristics of the cuprates, however the nodeless superconducting gap clearly excludes the possibility of d-wave order parameter. Instead it points to s-wave or extended s-wave symmetry of the order parameter.  相似文献   

18.
Random dopants in trans (CH)x introduce a broad band of gap states which merges with the conduction and valence band edges at a doping concentration nc of a few percent. This overlap of band and gap states leads to an onset of Pauli susceptibility, since the density of states at the Fermi energy EF is nonzero for n>nc. However, EF lies in a region of localized states until n is considerably greater than nc and the system remains a semiconductor.  相似文献   

19.
The low-temperature specific heat (LTSH) of the melt-quenched Ni81.5Px- B18.5?x amorphous alloy system, with 0 ? x ? 18.5, is presented. The decomposition of the LTSH into magnetic, lattice and electronic contributions shows that both Debye temperature θD and electronic specific heat coefficient decrease when the concentration of P increases.The electronic density of states N(EF), deduced from γ for various Ni-metalloid alloys, is plotted as a function of the average electronic concentration xZM, where x is the metalloid concentration and ZM is the chemical valence of M. Following Malozemoff et al.'s work, this plot is considered as a representation of the band structure and yields the change of the Fermi level with alloying.  相似文献   

20.
Energy losses of slow ions with velocitiesv?v F (v F is the Fermi velocity) in an interacting degenerate electron gas are calculated on the basis of the dielectric theory of Singwi. It is shown that the local field effects taken into account in this theory lead to an increase of the energy losses as compared with the Lindhard stopping power by a factor which can reach a few tens of percent for some compressed ICF plasmas. Corresponding factors for simple metals are as much as 2–3 and are in agreement with experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号