首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the room temperature electronic transport properties of a zinc oxide (ZnO) coated peptide nanotube contacted with Au electrodes. Current–voltage (IV) characteristics show asymmetric negative differential resistance (NDR) behavior along with current rectification. The NDR phenomenon is observed in both negative and positive voltage sweep scans, and found to be dependent on the scan rate and humidity. Our results suggest that the NDR is due to protonic conduction arising from water molecule redox reaction on the surface of ZnO coated peptide nanotubes rather than the conventional resonant tunneling mechanism.  相似文献   

2.
王丽师  徐建萍  石少波  张晓松  任志瑞  葛林  李岚 《物理学报》2013,62(19):196103-196103
本文通过化学浴沉积法获得了直径约为50 nm, 长度约为250 nm的ZnO纳米棒阵列, 引入纳米ZnS对ZnO纳米棒进行表面修饰, 分别制备得到了具有ITO (indium tin oxides)/ZnO/Poly-(3-hexylthiophene) (P3HT)/Au和ITO/ZnO@ZnS/P3HT/Au结构的多层器件. 通过I-V曲线对比讨论了两种结构器件的开启电压, 串联电阻, 反向漏电流及整流比等参数, 认为包含ZnS修饰层器件的开启电压、串联电阻、反向漏电流明显降低, 整流比显著增强, 展现出更优异的电子传输性能. 光致发光光谱分析结果证实由于ZnS使ZnO纳米 棒的表面缺陷产生的非辐射复合被明显抑制, 弱化了电场激发下的载流子陷获, 改善了器件的导电特性. 关键词: ZnO纳米棒阵列 表面修饰 电流-电压特性  相似文献   

3.
《Current Applied Physics》2020,20(3):371-378
The negative differential resistance (NDR) effect was observed in a Pt/BiFeO3/TiO2/BiFeO3/Pt memory cell by using light-illumination as extra stimulation. Further, the coexistence appearances and gradually becomes obvious when the device is exposed to light-illumination, which display an excellent stability and reversibility of the coexistence of NDR and resistive switching (RS) at room temperature. Through analysis of the physical conduction mechanism, it is expected that a large number of photo-generated charge carriers are induced under light-illumination on the surface and interface of the heterojunction is responsible for the appearance of this coexistence phenomenon. Importantly, the NDR effect is strengthened by the competition transfer of charge carrier in the polarized electric field under light-illumination. This work shows that the coexistence of light-modulated NDR and RS can deeply explore the potential applications of light-controlled multifunctional devices.  相似文献   

4.
In this paper, we show negative differential resistance (NDR) in CdSe quantum dot/MEH-PPV based nanocomposite multi-layer heterostructures at room temperature. The four-layer structure exhibited a maximum peak-to-valley ratio of current of 1190 at room temperature, while two-layer structures show a value of 4. Two-, three- and four-layer structures are studied. Each device configuration exhibits different kind of negative differential resistance. The possible mechanism is explained on the basis of tunneling phenomena.  相似文献   

5.
J. Zhang  B. Xu  Z. Qin 《Physics letters. A》2018,382(18):1226-1230
By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based “radical-π-radical” molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.  相似文献   

6.
Metal–insulator–metal (MIM) devices play an important role in information storage cells. In this research, a MIM with an insulator made from polydimethylsiloxane blended with gold nanoparticles has been investigated. The current–voltage characteristic demonstrates a negative differential resistance (NDR) and memory effect. This article attempts to explain the NDR and memory effect, using the charge trapping and releasing mechanisms of the gold nanoparticles and also electron tunneling mechanisms.  相似文献   

7.
From experimental time dependences of the instantaneous brightness and the total current passing through a ZnS: Mn thin-film electroluminescent device, capacitance-voltage, charge-voltage, and current-voltage characteristics of the device are calculated. Conditions for negative differential resistance (NDR) of S and N types are found. An NDR mechanism that exploits the ionization and the recharge of deep donors and acceptors (zinc and sulfur vacancies) with the formation of space charge at the cathodic and anodic interfaces of the phosphor is suggested.  相似文献   

8.
The effects of barrier asymmetry in a resonant tunnel diode (RTD) on the frequency response of the negative dynamical resistance are described for (i) DC biasing in the positive differential resistance (PDR) region and (ii) DC biasing in the negative differential resistance (NDR) region. Collector barriers more transparent than emitter barriers enhance performance for NDR DC-biased devices. Asymmetry has no apparent effect for PDR DC-biased devices operating in transit time mode.  相似文献   

9.
N-dodecanethiol capped zinc sulfide(Zn S) nanocrystals were synthesized by the one-pot approach and blended with poly(N-vinylcarbazole)(PVK) to fabricate electrical bistable devices. The corresponding devices did exhibit electrical bistability and negative differential resistance(NDR) effects. A large ON/OFF current ratio of 104 at negative voltages was obtained by applying different amplitudes of sweeping voltage. The observed conductance switching and the negative differential resistance are attributed to the electric-field-induced charge transfer between the nanocrystals and the polymer,and the charge trapping/detrapping in the nanocrystals.  相似文献   

10.
Pseudomorphic trench-type InGaAs/InAlAs quantum-wire field-effect transistors (QWR-FET) are realized by selective molecular beam epitaxy. The pseudomorphic QWR-FET has a negative differential resistance (NDR) effect with a low source–drain voltage (0.3 V). The NDR spectra are clearly observed in the 50–220 K temperature range. The operating current of the pseudomorphic QWR-FET is twice that of a lattice-matched QWR-FET, and this is thought to be due to the higher electron mobility.  相似文献   

11.
Variations in the switching threshold voltage of memristive devices present significant challenges for their integration into large-scale circuits. In this paper, we propose to address this problem by adding a device exhibiting S-type (N-type) negative differential resistance (NDR) in series (parallel) with memristive devices. The main effect comes from the transition between low- and high-conductivity branches of the NDR device, which leads to a redistribution of the voltage drop inside the device stack, and, as a result, the effective lowering of variations in the switching threshold. The idea is checked experimentally using a TiO2?x memristive device connected in parallel with a tunnel GaAs diode.  相似文献   

12.
S-and N-type negative differential resistance (NDR) has been observed in thin-film electroluminescent emitters based on zinc sulfide doped with manganese, and conditions for its emergence have been identified. It has been found that when a negative half-wave of voltage is applied to the nontransparent top electrode, an S-type NDR with a region of decreasing current is observed, and when it is applied to the transparent bottom electrode, the NDR will be N-type. The emergence of NDR is due to space charges which form in the near-cathode and near-anode layers of the phosphor.  相似文献   

13.
The current study investigates the performance of dye-sensitized solar cells (DSSCs) based on Al-doped and undoped ZnO nanorod arrays synthesized by a simple hydrothermal method. Current density-voltage (J-V) characterizations indicate that Al-doping in ZnO crystal structure can significantly improve current densities and the energy conversion efficiency (η) of ZnO nanorod-based DSSCs. The maximum η, 1.34%, was achieved in DSSC when Al-doped ZnO nanorod arrays were grown in 0.04 M zinc acetate dihydrate solution with 5 mM aluminum nitrate nonahydrate. This result represents a large increase of η in Al-doped ZnO nanorod-based DSSCs as compared to undoped (0.05%). The improved DSSC photovoltaic performance can be attributed to two main factors: (1) increased light harvesting efficiency due to a large amount of N719 adsorbed on the large surface area of Al-doped ZnO nanorod arrays, and (2) increased electrical conductivity due to A13+ ion doped into the ZnO lattice at the divalent Zn2+ site, allowing electrons to move easily into the Al-doped ZnO conduction band.  相似文献   

14.
Carrying on first-principles, the deformation effects on negative differential resistance (NDR) and rectifying behaviors of two cumulenic monatomic rings connected by polyyne and sandwiched between two Au electrodes are investigated. Interestingly, the number of obvious NDR whose peak-to-valley ratios increase from 1.24 to 5.16 is more than three and reverse rectification ratios also climb up from 1.42 to 7.89 with deformations increasing. Analysis of transmission spectra and frontier orbitals reveals that the response of different levels and resonant peaks, and transfer of the extended states to localized states of frontier orbital resonances under biases are responsible for these phenomena. Our works present a potential route to develop a multi-functional pressure device which has multi-peaks of NDR and rectifying behaviors.  相似文献   

15.
在原子力显微镜的接触扫描模式下,研究了半导体ZnO纳米棒的压电放电特性.采用两步湿化学法制备沿c轴择优生长的ZnO纳米棒阵列;利用镀Pt探针接触扫描ZnO纳米棒获得峰值达120 pA电流脉冲,脉冲持续时间可达30 ms,电流脉冲与纳米棒的形貌存在对应关系.镀Pt探针与ZnO纳米棒接触形成肖特基二极管,I-V特性研究表明放电的ZnO纳米棒压电电势必须大于03 V,以驱动肖特基二极管并输出电流;放电时肖特基二极管的结电阻达吉欧(GΩ)量级,是影响压电电势输出的主要因 关键词: ZnO 纳米棒 压电放电 肖特基接触  相似文献   

16.
Vertically well-aligned single crystal ZnO nanorod arrays were synthesized and enhanced field electron emission was achieved after radio-frequency (rf) Ar plasma treatment. With Ar plasma treatment for 30 min, flat tops of the as-grown ZnO nanorods have been etched into sharp tips without damaging ZnO nanorod geometrical morphologies and crystallinity. After the Ar ion bombardment, the emission current density increases from 2 to 20 μA cm−2 at 9.0 V μm−1 with a decrease in turn-on voltage from 7.1 to 4.8 V μm−1 at a current density of 1 μA cm−2, which demonstrates that the field emission of the as-grown ZnO nanorods has been efficiently enhanced. The scanning electron microscopy (SEM) results, in conjunction with the results of transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence observation, are used to investigate the mechanisms of the field emission enhancement. It is believed that the enhancements can be mainly attributed to the sharpening of rod tops, and the decrease of electrostatic screening effect.  相似文献   

17.
The S-parameters of several different quantum well double barrier diodes have been measured. A technique has been developed for measuring whisker contacted diodes with and HP 8510B automatic network analyzer. Special coaxial mounts using K-connectors were designed to enable measurements up to 20 GHz. The voltage-dependent conductance and capacitance were derived from the measured reflection coefficient of each device. The C/V characteristics were observed to exhibit an anomalous increase at voltages corresponding the the negative differential resistance region (NDR). These are the first reported S-parameter measurements in the negative differential resistance region of quantum well double barrier diodes. A theory is presented that explains, in part, the observed results.  相似文献   

18.
Xiang-Peng Zhou 《中国物理 B》2021,30(12):127301-127301
AlN/GaN resonant tunneling diodes (RTDs) were grown separately on freestanding GaN (FS-GaN) substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy (PA-MBE). Room temperature negative differential resistance (NDR) was obtained under forward bias for the RTDs grown on FS-GaN substrates, with the peak current densities (Jp) of 175-700 kA/cm2 and peak-to-valley current ratios (PVCRs) of 1.01-1.21. Two resonant peaks were also observed for some RTDs at room temperature. The effects of two types of substrates on epitaxy quality and device performance of GaN-based RTDs were firstly investigated systematically, showing that lower dislocation densities, flatter surface morphology, and steeper heterogeneous interfaces were the key factors to achieving NDR for RTDs.  相似文献   

19.
《Physics letters. A》2020,384(17):126342
Interface trap can act as the generation center in device to induce a very weak generation current. We observed the negative differential resistance NDR of this generation current ID in nMOSFET with the floating source. It originates from that the generation function of interface trap is enabled and then is shut down in turn as increasing the drain voltage. This change relies on the interaction among the interface trap energy-level and the electron's Fermi-levels of drain and source under the floating source condition. It is found that the peak-to-valley ratio of ID is beyond 30.  相似文献   

20.
We investigate the light-current-voltage characteristics and emission spectra of 2.3 THz quantum cascade laser operating in the negative differential resistance (NDR) region. It was shown that the formation of electric field domains (EFDs) leads to a large number of discontinuities on the current-voltage and the total optical power on current characteristics. Measurements of emission spectra at different current (before the NDR region and in the NDR region) shows that the formation of EFDs results in decrease of the output intensity, but does not influence on Fabry-Perot multi-mode structure of THz QCL. The developed theoretical model predicts the formation of EFDs in the NDR region and qualitatively explain the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号