首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentration dependences of the mid-IR kinetic of luminescence at 5E?5T2 transition in Fe:ZnSe and Fe:ZnS laser samples were studied in 14–300 K temperature ranges. Radiation lifetime in Fe:ZnSe samples measured using low doped samples with iron concentration 0.1×1018 cm?3 was estimated to be 57 μs. The magnetic susceptibility for higher doped (CFe=38 and 112×1018 cm?3) Fe:ZnSe samples was found to consist of a paramagnetic Curie–Weiss behavior arising from the weakly interacting Fe2+ ions and a diamagnetic ZnSe contribution plus a temperature-independent, field-dependent contribution possibly arising from very small amounts of aggregated Fe.  相似文献   

2.
Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1–5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 °C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50–150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 °C along with relatively resolved glow peak at 180 °C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 °C along with two well defined peaks at ~215 and 275 °C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail.  相似文献   

3.
《Current Applied Physics》2010,10(1):333-336
Observation of room temperature ferromagnetism in Fe doped In2O3 samples (In1−xFex)2O3 (0  x  0.07) prepared by co-precipitation technique is reported. Lattice parameter obtained from powder X software shows distinct shrinkage of the lattice constant indicating an actual incorporation of Fe ions into the In2O3 lattice. X-ray diffraction data measurements show that the entire sample exhibits single phase polycrystalline behavior. SEM micrographs showed the prepared powder was in the range 25–36 nm. SEM EDS mapping showed the presence of Fe and In ions in the Fe doped In2O3 sample. The highest remanence magnetization moment (6.624 × 10−4 emu/g) is reached in the sample with x = 0.03.  相似文献   

4.
The ZnS quantum dots (QDs) with Cr and Cu doping were synthesized by chemical co-precipitation method. The nanostructures of the prepared undoped and doped ZnS QDs were characterized by UV–vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sizes of QDs were found to be within 3–5 nm range. The nonlinear parameters viz. Two photon absorption coefficient (β2), nonlinear refractive index (n2), third order nonlinear susceptibility (χ3) at wavelength 532 nm and Four photon absorption coefficient (β4) at wavelength 1064 nm have been calculated by Z-scan technique using nanosecond Nd:YAG laser in undoped, Cr doped and Cu doped ZnS QDs. Higher values of nonlinear parameters for doped ZnS infer that they are potential material for the development of photonics devices and sensor protection applications.  相似文献   

5.
《Current Applied Physics》2010,10(3):724-728
Fe3+ doped δ-Bi2O3 thin films were prepared by sol–gel method on quartz glass substrate at room temperature and annealed at 800 °C. The thin films were then characterized for structural, surface morphological, optical and electrical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption measurements and d.c. two-probe, respectively. The XRD analyses revealed the formation δ-Bi2O3 followed by a mixture of Bi25FeO40 and Bi2Fe4O9. SEM images showed reduction in grain sizes after doping and the optical studies showed a direct band gap which reduced from 2.39 eV for pure δ-Bi2O3 to 1.9 eV for 10% Fe3+ doped δ-Bi2O3 thin film. The electrical conductivity measurement showed the films are semiconductors.  相似文献   

6.
ZnS nanoparticles with Mn2+ doping (1–2.5%) have been prepared through a simple soft chemical route, namely the chemical precipitation method. The nanostructures of the prepared undoped ZnS and Mn2+-doped ZnS:Mn nanoparticles have been analyzed using X-ray diffraction (XRD), Scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–vis spectrophotometer. The size of the particles is found to be in 2–3 nm range. Room-temperature photoluminescence (PL) spectrum of the undoped sample only exhibits a blue-light emission peaked at ∼365 nm under UV excitation. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+ 4T16A1 transition is observed along with the blue emission. The prepared 2.5% Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission at ∼580 nm with the blue emission suppressed.  相似文献   

7.
《Current Applied Physics》2009,9(5):1072-1078
Electrical conductivity and dielectric measurements have been investigated for four different average grain sizes ranging from 3 to 7 nm of nanocrystalline Ni0.2Cd0.3Fe2.5−xAlxO4 (0.0  x  0.5) ferrites. The impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of the Al doped Ni–Cd ferrites. The analysis of data shows only one semi-circle corresponding to the grain boundary volume suggesting that the conduction mechanism takes place predominantly through grain boundary volume in the studied samples. The variation of impedance properties with temperature and composition has been studied in the frequency range of 120 Hz–5 MHz between the temperatures 300–473 K. The hopping of electrons between Fe3+ and Fe2+ as well as hole hopping between Ni3+ and Ni2+ ions at octahedral sites are found to be responsible for conduction mechanism. The dielectric constant and loss tangent (tan δ) are found to decrease with increasing frequency, whereas they increase with increasing temperature. The dielectric constant shows an anomalous behavior at selected frequencies, while the temperature increases, which is expected due to the generation of more electrons and holes as the temperature increases. The behavior has been explained in the light of Rezlescu model.  相似文献   

8.
Large-area arrays of highly oriented Co-doped ZnO nanorods with pyramidal hexagonal structure are grown on silica substrates by wet chemical decomposition of zinc–amino complex in an aqueous medium. In case of undoped ZnO with an equi-molar ratio of Zn2+/hexamethylenetetramine (HMT), highly crystalline nanorods were obtained, whereas for Co-doped ZnO, good quality nanorods were formed at a higher Zn2+/HMT molar ratio of 4:1. Scanning electron microscope (SEM) studies show the growth of hexagonal-shaped nanorods in a direction nearly perpendicular to the substrate surface with a tip size of ~50 nm and aspect ratio around 10. The XRD studies show the formation of hexagonal phase pure ZnO with c-axis preferred orientation. The doping of Co ions in ZnO nanorods was confirmed by observation of absorption bands at 658, 617 and 566 nm in the UV–vis spectra of the samples. The optical studies also suggest Co ions to be present both in +2 and +3 oxidation states. From the photoluminescence studies, a defect-related emission is observed in an undoped sample of ZnO at 567 nm. This emission is significantly quenched in Co-doped ZnO samples. Further, the Co-doped nanorods have been found to show ferromagnetic behavior at room temperature from vibrating sample magnetometer (VSM) studies.  相似文献   

9.
Transparent glass–ceramics containing zinc–aluminum spinel (ZnAl2O4) nanocrystals doped with tetrahedrally coordinated Co2+ ions were obtained by the sol–gel method for the first time. The gels of composition SiO2–Al2O3–ZnO–CoO were prepared at room temperature and heat-treated at temperature ranging 800–950 °C. When the gel samples were heated up to 900 °C, ZnAl2O4 nanocrystals were precipitated. Co2+ ions were located in tetrahedral sites in ZnAl2O4 nanocrystals. X-ray diffraction analysis shows that the crystallite sizes of ZnAl2O4 crystal become large with the heat-treatment temperature and time, and the crystallite diameter is in the range of 10–15 nm. The dependence of the absorption and emission spectra of the samples on heat-treatment temperature were presented. The difference in the luminescence between Co2+ doped glass–ceramic and Co2+ doped bulk crystal was analysed. The crystal field parameter Dq of 423 cm−1 and the Racah parameters B of 773 cm−1 and C of 3478.5 cm−1 were calculated for tetrahedral Co2+ ions.  相似文献   

10.
A series of LiNbO3 crystals doped with various concentrations of ZnO and fixed concentrations of RuO2 and Fe2O3 have been grown by the Czochralski method from the congruent melts. The type of charge carriers was determined by Kr+ laser (476 nm) and He–Ne laser (633 nm). The results revealed that the holes were the dominant charge carriers at blue light irradiation. Dual-wavelength and two-color techniques were employed to investigate the nonvolatile holographic storage properties of Ru:Fe:LiNbO3 and Zn doped Ru:Fe:LiNbO3 crystals. The essential parameters of blue nonvolatile holographic storage in Zn:Ru:Fe:LiNbO3 crystals were enhanced greatly with the increase of Zn concentration. This indicates that the damage resistant dopants Zn2+ ions enhance the photorefractive properties at 476 nm wavelength instead of suppressing the photorefraction. The different mechanisms of blue photorefractive and nonvolatile holographic storage properties by dual wavelength recording in Zn:Ru:Fe:LiNbO3 crystals were discussed.  相似文献   

11.
Ionoluminescence (IL) and photoluminescence (PL) spectra for different rare earth ions (Sm3+ and Dy3+) activated YAlO3 single crystals have been induced with 100 MeV Si7+ ions with fluence of 7.81×1012 ions cm?2. Prominent IL and PL emission peaks in the range 550–725 nm in Sm3+ and 482–574 nm in Dy3+ were recorded. Variation of IL intensity in Dy3+ doped YAlO3 single crystals was studied in the fluence range 7.81×1012–11.71×1012 ions cm?2. IL intensity is found to be high in lower ion fluences and it decreases with increase in ion fluence due to thermal quenching as a result of an increase in the sample temperature caused by ion beam irradiation. Thermoluminescence (TL) spectra were recorded for fluence of 5.2×1012 ions cm?2 on pure and doped crystals at a warming rate of 5 °C s?1 at room temperature. Pure crystals show two glow peaks at 232 (Tg1) and 328 °C (Tg2). However, in Sm3+ doped crystals three glow peaks at 278 (Tg1), 332 (Tg2) and 384 °C (Tg3) and two glow peaks at 278 (Tg1) and 331 °C (Tg2) in Dy3+ was recorded. The kinetic parameters (E, b s) were estimated using glow peak shape method. The decay of IL intensity was explained by excitation spike model.  相似文献   

12.
Glasses in the system xFe2O3·(100?x) [45ZnO·55B2O3] (0≤x≤10 mol%) have been prepared by melting at 1200 °C and rapidly cooling at room temperature. The obtained samples were submitted to an additional thermal treatment at 570 °C for 12 h in order to relax the glass structure as well as to improve the local order. The as cast and heat treated samples were investigated using X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) measurements. The XRD patterns of all the studied samples show their vitreous nature. Structural modifications occurring in the heat treated samples compared to the untreated ones have been pointed out. EPR spectra of untreated and heat treated samples revealed resonance absorptions centered at g≈2.0, g≈4.3 and g≈6.4. The compositional variation of the line intensity and linewidth of the absorptions from g≈4.3 and g≈2.0 have been interpreted in terms of the variation in the concentration of the Fe3+ ions and the interaction between the iron ions. The EPR spectra of the untreated samples containing 5 mol% Fe2O3 have been studied at different temperatures (110–290 K). The line intensity of the resonance signals decreases with increase in temperature whereas the linewidth is found to be independent of temperature. It was also found that the temperature variation of reciprocal line intensity obeys the Boltzmann law.  相似文献   

13.
Vibrational Raman spectra have been measured for strontium barium niobate (Sr0.5Ba0.5Nb2O6, SBN50) single crystals and nanopowders doped with 1 mol% of the luminescent ions Eu3+ and Er3+. The nanocrystalline materials show slightly broader spectra with respect to the single crystals with the same composition. The presence of the Eu3+ and Er3+ ions at the 1 mol% doping level, and the present particle size (200 nm) do not appear to affect the ferro-to-paraelectric phase transition temperature typical of undoped SBN50 single crystals, as detected from anomalies in the dependence of the position of the Raman peak around 635 cm?1 as a function of the temperature.  相似文献   

14.
In this report, SrTi(1 ? x)Fe(x)O(3 ? δ) photocatalyst powder was synthesized by a high temperature solid state reaction method. The morphology, crystalline structures of obtained samples, was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), respectively. The electronic properties and local structure of the perovskite STFx (0  x  1) systems have been probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. The effects of iron doping level x (x = 0–1) on the crystal structure and chemical state of the STFx have been investigated by X-ray photoelectron spectroscopy and the valence band edges for electronic band gaps were obtained for STFx by ultraviolet photoelectron spectroscopy (UPS). A single cubic perovskite phase of STFx oxide was successfully obtained at 1200 °C for 24 h by the solid state reaction method. The XPS results showed that the iron present in the STFx perovskite structure is composed of a mixture of Fe3+ and Fe4+ (SrTi(1 ? x)[Fe3+, Fe4+](x)O(3 ? δ)). When the content x of iron doping was increased, the amount of Fe3+ and Fe4+ increased significantly and the oxygen lattice decreased on the surface of STFx oxide. The UPS data has confirmed that with more substitution of iron, the position of the valence band decreased.  相似文献   

15.
TiO2 nanoparticles doped with two different concentrations of Cobalt, 0.02 and 0.04 mol, are prepared by sol–gel method. The crystalline phase of the doped and undoped nanoparticles and particle sizes are observed with X-ray diffraction and transmission electron microscope. FTIR confirms the bonding interaction of Co2+ in TiO2 lattice framework. The UV absorption spectra of the doped material shows two absorption peaks in the visible region related to d–d electronic transitions of Co2+ in TiO2 lattice. Compared to undoped TiO2 nanoparticles, the cobalt doped samples show a red shift in the band gap. Steady state photoluminescence spectra give emission peaks related to oxygen defects. The decrease in the intensity ratio of UV/visible emission peaks confirms distortion of structural regularity and formation of defects after doping. The intensity ratio of different visible emission peaks is nearly same for undoped and 0.02 Co2+. However, this ratio decreases profoundly at 0.04 Co2+, due to concentration quenching effect. Photoluminescence excitation spectra, recorded at 598 nm emission wavelength, give different excitation peaks associated with oxygen vacancies and Co2+. Time resolved photoluminescence spectra give longer decay time for doped samples, indicating longer relaxation of conduction band electrons on the defect and on dopant sites.  相似文献   

16.
Correlation of phase formation, critical transition temperature Tc, microstructure, and critical current density Jc with sintering temperature has been studied for acetone doped MgB2/Fe tapes. Sintering was performed at 600–850 °C for 1 h in a flowing Ar atmosphere. High boron substitution by carbon was obtained with increasing the sintering temperature; however, the acetone doped samples synthesized at 800 °C contain large size MgB2 grains and more MgO impurities. Incomplete reaction for the acetone doped samples heated at 600 °C result in bad intergrain connectivity. At 4.2 K, the best Jc value was achieved in the acetone doped sample sintered at 700 °C, which reached 24,000 A/cm2 at 10 T and 10,000 A/cm2 at 12 T, respectively. Our results indicate that the small grain size and less impurity were also important for the improvement of JcB properties besides the substitutions of B by C.  相似文献   

17.
Undoped and Eu3+ activated Ln3BWO9 (Ln=Y, La, Gd) were prepared by the Pechini method and characterized with X-ray diffraction (XRD) and ultraviolet (UV) spectroscopy. All the samples have the hexagonal phase after heat treatment in the range of 850–1000 °C. The Eu3+ doped samples emit high-purity red light with peak maximum at about 617 nm under excitation of UV light (~285 nm) at room temperature. When the doping concentration of Eu3+ is about 20–30%, luminescence intensity reaches the maximum. Luminescence decay curves indicate that Ln3BWO9:Eu3+ exhibits a fast decay time of about 0.5 ms. A possible luminescence mechanism has also been proposed. It is worth noting that both the absorption of host lattice and the charge transfer (CT) transition of Eu3+ are of great importance to the promising luminescent performance of Ln3BWO9:Eu3+.  相似文献   

18.
White emitting nanocrystalline ZrO2:Eu3+ phosphors were synthesized by a simple precipitation route without using a capping agent. X-ray diffraction (XRD) study of ZrO2 and ZrO2:Eu3+samples revealed the presence of monoclinic and tetragonal phases. The monoclinic phase increases with increase in the annealing temperature while the tetragonal phase increases with increase in the concentration of Eu3+. This can be attributed to the presence of oxygen vacancy evolved when Zr4+ is replaced by Eu3+. Photoluminescence (PL) emission peaks of Eu3+ are observed at 591, 596, 606 and 613 nm on monitoring excitation wavelengths at 250, 286, 394 and 470 nm. The peaks at 591 and 606 nm were found to correlate with the tetragonal phase and those at 596 and 613 nm with the monoclinic phase. Intensities of these peaks are found to change as the crystal structure changes. The lifetime value corresponding to 591 nm peak increases with Eu3+ concentration at a particular heating temperature indicating increase of tetragonal phase with respect to monoclinic phase. The CIE co-ordinates of the doped samples were found to be close to that of white color (0.33, 0.33). The changes in the crystal structure of the doped samples due to doping and annealing did not affect the white color emission.  相似文献   

19.
Magnetocaloric properties of HoFeO3 single crystal are investigated along the direction [100]. Magnetic field dependent magnetization isotherms at different temperatures undergo a metamagnetic transition, entropy change as large as 19.2 J/kg K and 15.8 J/kg K are obtained at 7 T in the vicinity of antiferromagnetic ordering temperature of Ho3+ and the metamagnetic transition, respectively. The coupling of Ho and Fe spins generates the compensation behavior at 6.5 K, separating the two large magnetic entropy change. Its refrigeration capacity (RC) value, as high as 220 J/kg, is appreciable and can be considered as a promising magnetic refrigerant. New evidence for spin reorientation of Fe3+ in HoFeO3 is also provided by the change of magnetic entropy.  相似文献   

20.
This paper reports the results of a time-resolved photoluminescence and energy transfer processes study in Ce3+ doped SrAlF5 single crystals. Several Ce3+ centers emitting near 4 eV due to 5d-4f transitions of Ce3+ ions substituting for Sr2+ in non-equivalent lattice sites were identified. The lifetime of these transitions is in the range of 25–35 ns under intra-center excitation in the energy region of 4–7 eV at T = 10 K. An effective energy transfer from lattice defects to dopant ions was revealed in the – 7–11 eV energy range. Both direct and indirect excitation channels are efficient at room temperature. Excitons bound to dopants are revealed at T = 10 K under excitation in the fundamental absorption region above 11 eV, as well as radiative decay of self-trapped excitons resulting in luminescence near 3 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号