首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study parametric optimal control problems governed by a system of time-dependent partial differential equations (PDE) and subject to additional control and state constraints. An approach is presented to compute the optimal control functions and the so-called sensitivity differentials of the optimal solution with respect to perturbations. This information plays an important role in the analysis of optimal solutions as well as in real-time optimal control.The method of lines is used to transform the perturbed PDE system into a large system of ordinary differential equations. A subsequent discretization then transcribes parametric ODE optimal control problems into perturbed nonlinear programming problems (NLP), which can be solved efficiently by SQP methods.Second-order sufficient conditions can be checked numerically and we propose to apply an NLP-based approach for the robust computation of the sensitivity differentials of the optimal solutions with respect to the perturbation parameters. The numerical method is illustrated by the optimal control and sensitivity analysis of the Burgers equation.Communicated by H. J. Pesch  相似文献   

2.
We present a mathematical model of a crane-trolley-load model, where the crane beam is subject to the partial differential equation (PDE) of static linear elasticity and the motion of the load is described by the dynamics of a pendulum that is fixed to a trolley moving along the crane beam. The resulting problem serves as a case study for optimal control of fully coupled partial and ordinary differential equations (ODEs). This particular type of coupled systems arises from many applications involving mechanical multi-body systems. We motivate the coupled ODE-PDE model, show its analytical well-posedness locally in time and examine the corresponding optimal control problem numerically by means of a projected gradient method with Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.  相似文献   

3.
Dynamic partial differential equation (PDE) parametric curves which can be expressed as a coupled system of two hyperbolic equations are developed. In curve design, dynamic PDE parametric curves can be modified intuitively and are more flexible than ordinary differential equation (ODE) curves. The calculation of dynamic PDE parametric curves must recur to numerical methods and a three-level finite difference scheme is proposed. Approximation and stability properties for the scheme are proved and convergence property is derived. An example of interpolating PDE curves is presented as an application of dynamic PDE parametric curves.  相似文献   

4.
Simone Göttlich  Michael Herty  Claus Kirchner 《PAMM》2007,7(1):2060053-2060054
We consider a PDE based supply network model with controllable nodes for which we derive an optimal control problem and present an adjoint-based solution technique. The supply network has two basic building blocks: The dynamics in a supplier is governed by a PDE and the behavior inside a queue is described by an ODE. The network model provides a framework to couple these equations at nodes. We introduce controls at so-called dispersing nodes and discuss suitable cost functionals leading to optimal control problems which we solve by a projected gradient method. The gradient information can be obtained from adjoint equations which we derive in the context of our supply network model. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In the context of ordinary differential equations, shooting techniques are a state-of-the-art solver component, whereas their application in the framework of partial differential equations (PDE) is still at an early stage. We present two multiple shooting approaches for optimal control problems (OCP) governed by parabolic PDE. Direct and indirect shooting for PDE optimal control stem from the same extended problem formulation. Our approach reveals that they are structurally similar but show major differences in their algorithmic realizations. In the presented numerical examples we cover a nonlinear parabolic optimal control problem with additional control constraints. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
A search for invariants of second order ODE systems under the class of point transformations, which mix the parameter and the dependent variables, uncovers a torsion tensor generalizing part of the curvature tensor of an affine connection. We study the geometry of ODE systems for which this torsion vanishes. These are the ODE systems for which deformations of solutions fixing a point constitute a field of Segré varieties in the tangent bundle of the locally defined space of solutions. Conversely, a field of Segré varieties for which certain differential invariants vanish induces a torsion-free ODE system on the space of solutions to a natural PDE system. The geometry on the solution space is used to produce first integrals for torsion-free ODE systems, given as algebraic invariants of a curvature tensor involving up to fourth derivatives of the equations. In the generic case, there are enough first integrals to solve the equations explicitly in spite of the absence of symmetry. In the case of torsion-free ODE pairs, the field of Segré varieties is equivalent to a half-flat split signature conformal structure, and we characterize in terms of curvature those systems having an abundance of totally geodesic surfaces.  相似文献   

7.
In this paper, a model predictive control (MPC) scheme for a class of parabolic partial differential equation (PDE) systems with unknown nonlinearities, arising in the context of transport-reaction processes, is proposed. A spatial operator of a parabolic PDE system is characterized by a spectrum that can be partitioned into a finite slow and an infinite fast complement. In this view, first, Galerkin method is used to derive a set of finite dimensional slow ordinary differential equation (ODE) system that captures the dominant dynamics of the initial PDE system. Then, a Multilayer Neural Network (MNN) is employed to parameterize the unknown nonlinearities in the resulting finite dimensional ODE model. Finally, a Galerkin/neural-network-based ODE model is used to predict future states in the MPC algorithm. The proposed controller is applied to stabilize an unstable steady-state of the temperature profile of a catalytic rod subject to input and state constraints.  相似文献   

8.
This paper deals with the mathematical analysis of a nonlinear system of three differential equations of mixed type. It describes the generation of fast ice streams in ice sheets flowing along soft and deformable beds. The system involves a nonlinear parabolic PDE with a multivalued term in order to deal properly with a free boundary which is naturally associated to the problem of determining the basal water flux in a drainage system. The other two equations in the system are an ODE with a nonlocal (integral) term for the ice thickness, which accounts for mass conservation and a first order PDE describing the ice velocity of the system. We first consider an iterative decoupling procedure to the system equations to obtain the existence and uniqueness of solutions for the uncoupled problems. Then we prove the convergence of the iterative decoupling scheme to a bounded weak solution for the original system.  相似文献   

9.
A new method for finding contact symmetries is proposed for both ordinary and partial differential equations. Symmetries more general than Lie point are often difficult to find owing to an increased dependency of the infinitesimal functions on differential quantities. As a consequence, the invariant surface condition is often unable to be “split” into a reasonably sized set of determining equations, if at all. The problem of solving such a system of determining equations is here reduced to the problem of finding its own point symmetries and thus subsequent similarity solutions to these equations. These solutions will (in general) correspond to some subset of symmetries of the original differential equations. For this reason, we have termed such symmetries associate symmetries. We use this novel method of associate symmetries to determine new contact symmetries for a non-linear PDE and a second order ODE which could not previously be found using computer algebra packages; such symmetries for the latter are particularly difficult to find. We also consider a differential equation with known contact symmetries in order to illustrate that the associate symmetry procedure may, in some cases, be able to retrieve all such symmetries.  相似文献   

10.
Aspects of the approximation and optimal control of systems governed by linear retarded nonautonomous functional differential equations (FDE) are considered. First, certain FDE are shown to be equivalent to corresponding abstract ordinary differential equations (ODE). Next, it is demonstrated that these abstract ODE may be approximated by difference equations in finite dimensional spaces. The optimal control problem for systems governed by FDE is then reduced to a sequence of mathematical programming problems. Finally, numerical results for two examples are presented and discussed.  相似文献   

11.
We consider the optimal control of solutions of first order Hamilton–Jacobi equations, where the Hamiltonian is convex with linear growth. This models the problem of steering the propagation of a front by constructing an obstacle. We prove existence of minimizers to this optimization problem as in a relaxed setting and characterize the minimizers as weak solutions to a mean field game type system of coupled partial differential equations. Furthermore, we prove existence and partial uniqueness of weak solutions to the PDE system. An interpretation in terms of mean field games is also discussed.  相似文献   

12.
We give a new computational method to obtain symmetries of ordinary differential equations. The proposed approach appears as an extension of a recent algorithm to compute variational symmetries of optimal control problems [P.D.F. Gouveia, D.F.M. Torres, Automatic computation of conservation laws in the calculus of variations and optimal control, Comput. Methods Appl. Math. 5 (4) (2005) 387-409], and is based on the resolution of a first order linear PDE that arises as a necessary and sufficient condition of invariance for abnormal optimal control problems. A computer algebra procedure is developed, which permits one to obtain ODE symmetries by the proposed method. Examples are given, and results compared with those obtained by previous available methods.  相似文献   

13.
We consider a class of structural acoustics models with thermoelastic flexible wall. More precisely, the PDE system consists of a wave equation (within an acoustic chamber) which is coupled to a system of thermoelastic plate equations with rotational inertia; the coupling is strong as it is accomplished via boundary terms. Moreover, the system is subject to boundary thermal control. We show that—under three different sets of coupled (mechanical/thermal) boundary conditions—the overall coupled system inherits some specific regularity properties of its thermoelastic component, as it satisfies the same singular estimates recently established for the thermoelastic system alone. These regularity estimates are of central importance for (i) well-posedness of Differential and Algebraic Riccati equations arising in the associated optimal control problems, and (ii) existence of solutions to the semilinear initial/boundary value problem under nonlinear boundary conditions. The proof given uses as a critical ingredient a sharp trace theorem pertaining to second-order hyperbolic equations with Neumann boundary data.  相似文献   

14.
In this paper we study a non‐linear system of differential equations arising in chemotaxis. The system consists of a PDE that describes the evolution of a population and an ODE which models the concentration of a chemical substance. We study the number of steady states under suitable assumptions, the existence of one global solution to the evolution problem in terms of weak solutions and the stability of the steady states. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
We consider a mathematical model for surface nanobubbles arising from hydrogen electrolysis in polymer electrolyte membrane (PEM) electrolyzers. Experimental advances in recent years indicated longer lifetimes of surface nanobubbles than may be explained by classical theories. Contrary to [5], we state a full model of an evolving single surface nanobubble yielding a coupled system consisting of a partial differential equation (PDE) for the hydrogen concentration in water and an ordinary differential equation (ODE) for the radius evolution. In the special case of dynamic equilibrium conditions, we prove the well-posedness of this steady state problem by a fixed-point strategy, assuming an acute-angled contact angle, and that the corresponding algorithm allows for its numerical simulation. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We give a new computational method to obtain symmetries of ordinary differential equations. The proposed approach appears as an extension of a recent algorithm to compute variational symmetries of optimal control problems [P.D.F. Gouveia, D.F.M. Torres, Automatic computation of conservation laws in the calculus of variations and optimal control, Comput. Methods Appl. Math. 5 (4) (2005) 387–409], and is based on the resolution of a first order linear PDE that arises as a necessary and sufficient condition of invariance for abnormal optimal control problems. A computer algebra procedure is developed, which permits one to obtain ODE symmetries by the proposed method. Examples are given, and results compared with those obtained by previous available methods.  相似文献   

17.
This paper studies the local‐in‐time existence of classical solutions to a hyperbolic system with differential boundary conditions modelling a flow in an elastic tube. The well‐known Lax transformations used for obtaining a priori estimates for conservation laws are difficult to apply here because of the inhomogeneity of the partial differential equations (PDE). Rather, our method relies on a suitable splitting of the original system into the PDE part and the ODE part, the characteristics for the PDE part, appropriate modulus of continuity estimates and a compactness argument. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
We propose and analyze an a posteriori error estimator for a partial differential equation (PDE)-constrained optimization problem involving a nondifferentiable cost functional, fractional diffusion, and control-constraints. We realize fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly PDE and propose an equivalent optimal control problem with a local state equation. For such an equivalent problem, we design an a posteriori error estimator which can be defined as the sum of four contributions: two contributions related to the approximation of the state and adjoint equations and two contributions that account for the discretization of the control variable and its associated subgradient. The contributions related to the discretization of the state and adjoint equations rely on anisotropic error estimators in weighted Sobolev spaces. We prove that the proposed a posteriori error estimator is locally efficient and, under suitable assumptions, reliable. We design an adaptive scheme that yields, for the examples that we perform, optimal experimental rates of convergence.  相似文献   

19.
We investigate a semi-smooth Newton method for the numerical solution of optimal control problems subject to differential-algebraic equations (DAEs) and mixed control-state constraints. The necessary conditions are stated in terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum principle is transformed into an equivalent nonlinear and semi-smooth equation in appropriate Banach spaces. This nonlinear and semi-smooth equation is solved by a semi-smooth Newton method. We extend known local and global convergence results for ODE optimal control problems to the DAE optimal control problems under consideration. Special emphasis is laid on the calculation of Newton steps which are given by a linear DAE boundary value problem. Regularity conditions which ensure the existence of solutions are provided. A regularization strategy for inconsistent boundary value problems is suggested. Numerical illustrations for the optimal control of a pendulum and for the optimal control of discretized Navier-Stokes equations conclude the article.  相似文献   

20.
We solve the problem of localization and stabilization of an unstable stationary point of a nonlinear system of ordinary differential equations (ODE) with a delayed argument for parameter values when the ODE system has chaotic dynamics. Translated from Nelineinaya Dinamika i Upravlenie, pp. 133–141, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号