首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Protonated ferulic acid and its principle fragment ion have been characterized using infrared multiple photon dissociation spectroscopy and electronic structure calculations at the B3LYP/6-311?+?G(d,p) level of theory. Due to its extensively conjugated structure, protonated ferulic acid is observed to yield three stable fragment ions in IRMPD experiments. It is proposed that two parallel fragmentation pathways of protonated ferulic acid are being observed. The first pathway involves proton transfer, resulting in the loss of water and subsequently carbon monoxide, producing fragment ions m/z 177 and 149, respectively. Optimization of m/z 177 yields a species containing an acylium group, which is supported by a diagnostic peak in the IRMPD spectrum at 2168?cm?1. The second pathway involves an alternate proton transfer leading to loss of methanol and rearrangement to a five-membered ring.  相似文献   

2.
Triacylglycerols were analyzed as cationized species (Li+, Na+, K+) by high-energy CID at 20 keV collisions utilizing MALDI-TOF/RTOF mass spectrometry. Precursor ions, based on [M+Li]+-adduct ions exhibited incomplete fragmentation in the high and low m/z region whereas [M+K]+-adducts did not show useful fragmentation. Only sodiated precursor ions yielded product ion spectra with structurally diagnostic product ions across the whole m/z range. The high m/z region of the CID spectra is dominated by abundant charge-remote fragmentation of the fatty acid substituents. In favorable cases also positions of double bonds or of hydroxy groups of the fatty acid alkyl chains could be determined. A-type product ions represent the end products of these charge-remote fragmentations. B- and C-type product ions yield the fatty acid composition of individual triacylglycerol species based on loss of either one neutral fatty acid or one sodium carboxylate residue, respectively. Product ions allowing fatty acid substituent positional determination were present in the low m/z range enabling identification of either the sn-1/sn-3 substituents (E-, F-, and G-type ions) or the sn-2 substituent (J-type ion). These findings were demonstrated with synthetic triacylglycerols and plant oils such as cocoa butter, olive oil, and castor bean oil. Typical features of 20 keV CID spectra of sodiated triacylglycerols obtained by MALDI-TOF/RTOF MS were an even distribution of product ions over the entire m/z range and a mass accuracy of ±0.1 to 0.2 u. One limitation of the application of this technique is mainly the insufficient precursor ion gating after MS1 (gating window at 4 u) of species separated by 2 u.  相似文献   

3.
In this work a systematic strategy integrating liquid chromatography/tandem mass spectrometry (LC/MS/MS) and online databases was developed to identify phosphocholines (PC) and lysophosphatidylcholines (LPC) in human red blood cells (RBCs). First of all, the neutral loss scan of 59 and the precursor ion scan of m/z 184 were performed to find out the possible lipids with phosphocholine head‐group structure in RBCs. The acquired [M+H]+ and [M+Na]+ adduct ions were then identified online using the Human Metabolome Database (HMDB) and the LIPID MAPS, which were then further confirmed by their MS/MS fragmentation. Based on the comparison of chemical structures of the detected PC and LPC with their corresponding MS/MS fragmentation pathways, several new diagnostic fragments or fragmentation pathway were found. These include, (1) the neutral losses of 183 could be used as a diagnostic fragmentation to discriminate PC and LPC; (2) product ions at m/z 104 could be used to distinguish LPC and their sn‐2 isomers; (3) fragment ions at m/z 184 are characteristic fragmentation that could be used for discrimination of sodiated ions [M+Na]+ and protonated ions [M+H]+, especially for co‐eluted PC or LPC with a molecular weight difference of 22. The structures of the above‐mentioned fragment ions were confirmed by quadrupole time‐of‐flight (Q‐TOF) MS. Furthermore, a PC and LPC focused LC/MS semi‐quantification approach was also developed and validated. This approach could be useful for future lipidomic study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MSn, n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides 18O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS3 CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MSn CID (n = 3 – 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.
Figure
?  相似文献   

5.
We have prepared a number of isomeric red seaweed galactan-derivative sulfated oligosaccharides to determine whether there were diagnostic differences among the isomeric mass spectra obtained using ESI CID MS/MS (triple quadrupole instrument). Fragmentation of the single or multicharged molecular ions from di-, tetra-, and hexasaccharides indicated that the relative positioning of the sulfate groups and type of monosaccharide unit affect the rate of cleavage of the glycosidic bonds. We also performed a comparative [M-Na] fragmentation study of positional isomers of sulfated disaccharides that present all four monosulfation possibilities on the galactopyranosidic ring. In this case, negative-ion ESI CID MS/MS approach gave diagnostic product ions from cross-ring cleavages along with the same main B1 ion (from sulfated Galp), at m/z 241, for all isomers. The isomeric disaccharides were also submitted to increased spray energy conditions inducing in-source fragmentation; preformed B1 ions were then fragmented to give similar product ions as those found in [M-Na] analysis. Evaluation of the relative abundances mainly for cross-ring fragment ions at m/z 138, 139, 151, 153 allowed clear distinction among the members of the disaccharide series. The different ratios for m/z 151/153 ions were consistent with the predominance of m/z 153 being related to the cases when the bond involved in the cleavage process links a sulfated carbon. A quadrupole ion trap instrument (MSn analysis) was also utilized to compare the results obtained with the triple quadrupole instrument.  相似文献   

6.
Collision-induced dissociation (CID) of deprotonated hexose-containing disaccharides (m/z 341) with 1–2, 1–4, and 1–6 linkages yields product ions at m/z 221, which have been identified as glycosyl-glycolaldehyde anions. From disaccharides with these linkages, CID of m/z 221 ions produces distinct fragmentation patterns that enable the stereochemistries and anomeric configurations of the non-reducing sugar units to be determined. However, only trace quantities of m/z 221 ions can be generated for 1–3 linkages in Paul or linear ion traps, preventing further CID analysis. Here we demonstrate that high intensities of m/z 221 ions can be built up in the linear ion trap (Q3) from beam-type CID of a series of 1–3 linked disaccharides conducted on a triple quadrupole/linear ion trap mass spectrometer. 18O-labeling at the carbonyl position of the reducing sugar allowed mass-discrimination of the “sidedness” of dissociation events to either side of the glycosidic linkage. Under relatively low energy beam-type CID and ion trap CID, an m/z 223 product ion containing 18O predominated. It was a structural isomer that fragmented quite differently than the glycosyl-glycolaldehydes and did not provide structural information about the non-reducing sugar. Under higher collision energy beam-type CID conditions, the formation of m/z 221 ions, which have the glycosyl-glycolaldehyde structures, were favored. Characteristic fragmentation patterns were observed for each m/z 221 ion from higher energy beam-type CID of 1–3 linked disaccharides and the stereochemistry of the non-reducing sugar, together with the anomeric configuration, were successfully identified both with and without 18O-labeling of the reducing sugar carbonyl group.  相似文献   

7.
Long-chain acyl Coenzyme A (CoA) is essentially composed of three major chemical groups, fatty acyl-, phosphopantetheino-, and 3′, 5′,-adenosine diphospho-moieties. The negative ion fast-atom bombardment mass spectrometry spectra of long-chain acyl CoA thioesters were characterized by the formation of abundant [M ? H]? and two distinct classes of fragment ions, one class which retained the acyl group and another class which is related to CoA that contains the phosphopantethene and adenine. The ions which retained the acyl group in the spectrum of palmitoyl CoA appeared at m/z 675, 657, 595, and 577 and were found to decompose by loss of alkylketene observed at m/z 357 and 339. Those ions which retained the adenine group were observed at m/z 426 and 408. In contrast to these ions observed following fast-atom bombardment ionization, tandem mass spectrometry of the [M ? H]?, from palmitoyl CoA (m/z 1004), yielded the adenine-containing ions as major products and the acyl-containing ions were of low abundance or not detected. These results suggested that the formation of many characteristic ions observed in direct FAB analysis occurred during the desorption process. The unique relationship between ions which involved the transition from acyl-containing ions to only CoA-containing ions by the loss of alkylketene allowed the development of tandem mass spectrometry protocols for the analysis of acyl CoA mixtures. Precursor scans of either m/z 357 or 339 yielded the identification of each species in a complex mixture. Identification of specific species was obtained with a neutral loss scan of the mass for a specific alkylketene.  相似文献   

8.
The importance of the mass spectral product ion structure is highlighted in quantitative assays, which typically use multiple reaction monitoring (MRM), and in the discovery of novel metabolites. Estradiol is an important sex steroid whose quantitation and metabolite identification using tandem mass spectrometry has been widely employed in numerous clinical studies. Negative electrospray ionization tandem mass spectrometry of estradiol (E2) results in several product ions, including the abundant m/z 183 and 169. Although m/z 183 is one of the most abundant product ions used in many quantitative assays, the structure of m/z 183 has not been rigorously examined. We suggest a structure for m/z 183 and a mechanism of formation consistent with collision induced dissociation (CID) of E2 and several stable isotopes ([D4]-E2, [13C6]-E2, and [D1]-E2). An additional product ion from E2, namely m/z 169, has also been examined. MS3 experiments indicated that both m/z 183 and m/z 169 originate from only E2 [M – H] m/z 271. These ions, m/z 183 and m/z 169, were also present in the collision induced decomposition mass spectra of other prominent estrogens, estrone (E1) and estriol (E3), indicating that these two product ions could be used to elucidate the estrogenic origin of novel metabolites. We propose two fragmentation schemes to explain the CID data and suggest a structure of m/z 183 and m/z 169 consistent with several isotopic variants and high resolution mass spectrometric measurements.   相似文献   

9.
Pulsed Q collision induced dissociation (PQD) was developed to facilitate detection of low-mass reporter ions from labeling reagents (e.g., iTRΑQ) in peptide quantification using an LTQ mass spectrometer (MS). Despite the large number of linear ion traps worldwide, the use and optimization of PQD for protein identification have been limited, in part due to less effective ion fragmentation relative to the collision induced dissociation (CID). PQD expands the m/z coverage of fragment ions to the lower m/z range by circumventing the typical low mass cut-off of an ion trap MS. Since database searching relies on the matching between theoretical and observed spectra, it is not clear how ion intensity and peak number might affect the outcomes of a database search. In this report, we systematically evaluated the attributes of PQD mass spectra, performed intensity optimization, and assessed the benefits of using PQD on the identification of peptides and phosphopeptides from an LTQ. Based on head-to-head comparisons between CID (higher intensity) and PQD (better m/z coverage), peptides identified using PQD generally have Xcorr scores lower than those using CID. Such score differences were considerably diminished by the use of 0.1% m-nitrobenzyl alcohol (m-NBA) in mobile phases. The ion intensities of both CID and PQD were adversely affected by increasing m/z of the precursor, with PQD more sensitive than CID. In addition to negating the 1/3 rule, PQD enhances direct bond cleavage and generates patterns of fragment ions different from those of CID, particularly for peptides with a labile functional group (e.g., phosphopeptides). The higher energy fragmentation pathway of PQD on peptide fragmentation was further compared to those of CID and the quadrupole-type activation in parallel experiments.  相似文献   

10.
Low-energy collision-induced dissociation (CID) of the molecular ions of fatty acid methyl esters obtained by electron ionization (70 eV) decompose in the tandem quadrupole mass spectrometer to yield a regular homologous series of carbomethoxy ions. Even at energies up to 200 eV (E lab), primarily carbomethoxy ions are present, with the most abundant found at m/z 101 at hi her energies. The lack of any other CID ions, including m/z 74 (McLafferty rearrangement) or m/z 87, suggest a rearranged molecular ion structure on leaving the first quadrupole mass analyzer. Analyses of various stable isotope variants support the hypothesis of alkyl radical migration to the carboxy carbonyl oxygen atom, with subsequent radical site directed cleavage either with or without a cyclization event. Decomposition of the molecular ions (70 eV) of several methyl branched fatty acid methyl esters, including phytanic acid, iso-methyl and anteiso-methyl branched acids, and tuberculostearic acid, reveals enhanced radical site cleavage at the alkyl branching positions. This method can be used to readily determine methyl (or alkyl) branching positions in a saturated fatty acid methyl ester.  相似文献   

11.
Fast atom bombardment mass spectrometry in the positive mode was used for the characterization of sodiated glycerol phosphatidylcholines. The relative abundance (RA) of the protonated species is similar to the RA of the sodiated molecular species. The sodiated fragment ion, [M + Na - 59](+), corresponding to the loss of trimethylamine, and other sodiated fragment ions, were also observed. The decomposition of the sodiated molecule is very similar for all the studied glycerol phosphatidylcholines, in which the most abundant ion corresponds to a neutral loss of 59 Da. Upon collision-induced dissociation (CID) of the [M + Na](+) ion informative ions are formed by the losses of the fatty acids in the sn-1 and sn-2 positions. Other major fragment ions of the sodiated molecule result from loss of non-sodiated and sodiated choline phosphate, [M + Na - 183](+), [M + Na - 184](+.) and [M + Na - 205](+), respectively. The main CID fragmentation pathway of the [M + Na - 59](+) ion yields the [M + Na - 183](+) ion, also observed in the CID spectra of the [M + Na](+) molecular ion. Other major fragment ions are [M + Na - 205](+) and the fragment ion at m/z 147. Collisional activation of [M + Na - 205](+) results in charge site remote fragmentation of both fatty acid alkyl chains. The terminal ions of these series of charge remote fragmentations result from loss of part of the R(1) or R(2) alkyl chain. Other major informative ions correspond to acylium ions.  相似文献   

12.
Decarboxylation is known to be the major fragmentation pathway for the deprotonated carboxylic acids in collision-induced dissociation (CID). However, in the CID mass spectrum of deprotonated benzoic acid (m/z 121) recorded on a Q-orbitrap mass spectrometer, the dominant peak was found to be m/z 93 instead of the anticipated m/z 77. Based on theoretical calculations, 18O-isotope labeling and MS3 experiments, we demonstrated that the fragmentation of benzoate anion begins with decarboxylation, but the initial phenide anion (m/z 77) can react with trace O2 in the mass analyzer to produce phenolate anion (m/z 93) and other oxygen-containing ions. Thus oxygen adducts should be considered when annotating the MS/MS spectra of benzoic acids.  相似文献   

13.
In this study, C-terminal protonated dipeptide eliminations were reported for both b 5 and b 4 ions of side chain hydroxyl group (–OH) containing pentapeptides. The study utilized the model C-terminal amidated pentapeptides having sequences of XGGFL and AXVYI, where X represents serine (S), threonine (T), glutamic acid (E), aspartic acid (D), or tyrosine (Y) residue. Upon low-energy collision-induced dissociation (CID) of XGGFL (where X?=?S, T, E, D, and Y) model peptide series, the ions at m/z 279 and 223 were observed as common fragments in all b 5 and b 4 ion (except b 4 ion of YGGFL) mass spectra, respectively. By contrast, peptides, namely SMeGGFL-NH2 and EOMeGGFL-NH2, did not show either the ion at m/z 279 or the ion at m/z 223. It is shown that the side chain hydroxyl group is required for the possible mechanism to take place that furnishes the protonated dipeptide loss from b 5 and b 4 ions. In addition, the ions at m/z 295 and 281 were detected as common fragments in all b 5 and b 4 ion (except b 4 ion of AYVYI) mass spectra, respectively, for AXVYI model peptide series. The MS4 experiments exhibited that the fragment ions at m/z 279, 223, 295, and 281 entirely reflect the same fragmentation behavior of [M?+?H]+ ion generated from commercial dipeptides FL-OH, GF-OH, YI-OH, and VY-OH. These novel eliminations reported here for b 5 and b 4 ions can be useful in assigning the correct and reliable peptide sequences for high-throughput proteomic studies.
Figure
?  相似文献   

14.
Protonated amino acids and derivatives RCH(NH2)C(+O)X · H+ (X = OH, NH2, OCH3) do not form stable acylium ions on loss of HX, but rather the acylium ion eliminates CO to form the immonium ion RCH = NH 2 + . By contrast, protonated dipeptide derivatives H2NCH(R)C(+O)NHCH(R′)C(+O)X · H+ [X = OH, OCH3, NH2, NHCH(R″)COOH] form stable B2 ions by elimination of HX. These B2 ions fragment on the metastable ion time scale by elimination of CO with substantial kinetic energy release (T 1/2 = 0.3–0.5 eV). Similarly, protonated N-acetyl amino acid derivatives CH3C(+O)NHCH(R′)C(+O)X · H+ [X = OH, OCH3, NH2, NHCH(R″)COOH] form stable B ions by loss of HX. These B ions also fragment unimolecularly by loss of CO with T 1/2 values of ~ 0.5 eV. These large kinetic energy releases indicate that a stable configuration of the B ions fragments by way of activation to a reacting configuration that is higher in energy than the products, and some of the fragmentation exothermicity of the final step is partitioned into kinetic energy of the separating fragments. We conclude that the stable configuration is a protonated oxazolone, which is formed by interaction of the developing charge (as HX is lost) with the N-terminus carbonyl group and that the reacting configuration is the acyclic acylium ion. This conclusion is supported by the similar fragmentation behavior of protonated 2-phenyl-5-oxazolone and the B ion derived by loss of H-Gly-OH from protonated C6H5C(+O)-Gly-Gly-OH. In addition, ab initio calculations on the simplest B ion, nominally HC(+O)NHCH2CO+, show that the lowest energy structure is the protonated oxazolone. The acyclic acylium isomer is 1.49 eV higher in energy than the protonated oxazolone and 0.88 eV higher in energy than the fragmentation products, HC(+O)N+H = CH2 + CO, which is consistent with the kinetic energy releases measured.  相似文献   

15.
The N terminus of peptides generated by AspN is restricted to about 40 dipeptide motifs starting with D or E. These motifs are visible upon collision-induced dissociation (CID) as b2 ions, which are often the most abundant low-mass fragment ions. It was observed that b2 ions are accompanied by a set of sequence-specific neutral losses of CO, H2O, NH3, and some other small units. To test the utility of these profiles as additional parameters for reliable assignment of the b2 ion motif besides its m/z value, the CID spectra of 221 different AspN-generated peptides covering all N-terminal D-X and E-X motifs were recorded. Qualitatively, the b2 ion fragmentation profiles of individual motifs were found to exhibit little dependency on the rest of the peptide sequence. Thus, it is concluded that the set of b2 ion fragmentation profiles recorded in this study can be used as reference set. Knowledge of these profiles provides an increased specificity for b2 ion annotation of AspN-generated peptides compared to the use of only a solitary b2 ion m/z value. Recognition of the b2 ion motif provides a two-amino-acid sequence including its direction; it provides the location of this motif at the N terminus, and it sets a starting point for further extension of the b ion series.  相似文献   

16.
Diacylglycerols (DAGs) are important lipid intermediates and have been implicated in human diseases. Isomerism complicates their mass spectrometric analysis; in particular, it is difficult to identify fatty acid substituents and locate the double bond positions in unsaturated DAGs. We have developed an analytical strategy using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) in conjunction with dimethyl disulfide (DMDS) derivatization and collision cross-section (CCS) measurement to characterize DAGs in biological samples. The method employs non-aqueous reversed-phase chromatographic separation and profile collision energy (CE) mode for MSE and MS/MS analyses. Three types of fragment ions were produced simultaneously. Hydrocarbon ions (m/z 50–200) obtained at high CE helped to distinguish unsaturated and saturated DAGs rapidly. Neutral loss ions and acylium ions (m/z 300–400) produced at low CE were used to identify fatty acid substituents. Informative methyl thioalkane fragment ions were used to locate the double bonds of unsaturated DAGs. Mono-methylthio derivatives were formed mainly by the reaction of DAGs with DMDS, where methyl thiol underwent addition to the first double bond farthest from the ester terminus of unsaturated fatty acid chains. The addition of CCS values maximized the separation of isomeric DAG species and improved the confidence of DAG identification. Fourteen DAGs were identified in mouse myotube cells based on accurate masses, characteristic fragment ions, DMDS derivatization, and CCS values.  相似文献   

17.
18.
The zwitterionic drug 3‐methyl‐9‐(2‐oxa‐2λ5‐2H‐1,3,2‐oxazaphosphorine‐2‐cyclohexyl)‐3,6,9‐triazaspiro[5,5]undecane chloride (SLXM‐2) is a novel synthetic compound which has shown anticancer activity and low toxicity in vivo. In this study, the various gas‐phase fragmentation routes were analyzed by electrospray ionization mass spectrometry (positive ion mode) in conjunction with tandem mass spectrometry (ESI‐MSn) for the first time. In ESI‐MS the fragment ion at m/z 289 (base peak) was formed by loss of the chlorine anion from the zwitterionic precursor SLXM‐2. The fragment ion at m/z 232 was formed from the ion at m/z 289 by loss of 1‐methylaziridine. The detailed gas‐phase collision‐induced dissociation (CID) fragmentation mechanisms obtained from the various precursor ions extracted from the zwitterionic SLXM‐2 drug was obtained by tandem mass spectrometry analyses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The metastable decompositions of trimethylsilylmethanol, (CH3)3SiCH2OH (MW: 104, 1) and methoxytrimethylsilane, (CH3)3SiOCH3 (MW: 104, 2) upon electron ionization have been investigated by use of mass-analyzed ion kinetic energy (MIKE) spectroscopy and D labeling. The metastable ions of 1 ·+ decompose to give the fragment ions m/z 89 (CH 3 · loss) and 73 (·CH2OH loss), whereas those of 2 ·+ only yield the fragment ion m/z 89 (CH 3 · loss). The latter fragment ion is generated by loss of a methyl radical from the trimethylsilyl group via a simple cleavage reaction as shown by D labeling. However, the fragment ions m/z 89 and 73 from 1 ·+ are generated following an almost statistical exchange of the original methyl and methylene hydrogen atoms in the molecular ion as shown also by D labeling. This exchange indicates a complex rearrangement of the molecular ion of 1 ·+ prior to metastable decomposition for which as key step a 1,2-trimethylsilyl group migration from carbon to oxygen is suggested. A different behavior is also found between the source-generated m/z 89 ions from 1 ·+ which decompose in the metastable time region to give ions m/z 61 by loss of ethylene and those from 2 ·+ which decompose in the metastable region to yield ions m/z 59 by elimination of formaldehyde.  相似文献   

20.
A study has been made of the mass spectral fragmentation upon electron impact of aliphatic C2? C12 chloromethyl esters and all their 66 monochlorinated derivatives. The fragmentation pathways of the parent chloromethyl esters were elucidated with the aid of the 1st FFR metastable ions. A McLafferty rearrangement gives the base peak in the C6? C11 parent esters and in almost all the 4-chloro and ω-chloro isomers. The subsequent loss of HCl gives a very characteristic peak of the chloromethyl esters and their (3-ω)-chloro derivatives at m/z 72, [C3H4O2]+. The 2-chloro isomers have the corresponding chlorine-containing fragment ion at m/z 106/108. The mass spectra of 2-, 3-, 4-, 5- and ω-chloro isomers give the characteristic fragment ions, the mass spectra of the other isomers being very similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号