首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
A novel intumescent flame retardant, containing ammonium polyphosphate (APP), and poly(hexamethylene terephthalamide) (PA6T), was prepared for flame retarding polypropylene (PP). The flame retardation of the PP composites was characterized by limiting oxygen index (LOI). The thermal degradation of the composites was investigated by means of thermogravimetric analysis (TG) and TG coupled with Fourier transform infrared spectroscopy (TG-FTIR). The morphology of the char obtained after combustion of the composites was studied by scanning electron microscopy. It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA6T/APP/PP (5/25/70) system increasing from 17.5 to 32. Meanwhile, the TG and TG-FTIR work indicated that PA6T could be effective as a carbonization agent and there was a synergistic reaction between PA6T and APP, which effectively promoted the char formation of the PP composites. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame retarded PP composites.  相似文献   

2.
An intumescent flame retardant system composed of ammonium polyphosphate (APP) and pentaerythritol (PER) was used for flame retarding ethylene–propylene–diene‐modified elastomer (EPDM)/polypropylene (PP) blends. Cerium phosphate (CeP) was synthesized and the effect on flame retardancy and thermal stability of EPDM/PP composites based on intumescent flame retardant (IFR) were studied by limiting oxygen index (LOI), UL‐94, and thermogravimetic analysis (TGA), respectively. Scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR) were used to analyze the morphological structure and the component of the residue chars formed from the EPDM/PP composites, and the mechanical properties of the materials were also studied. The addition of CeP to the EPDM/PP/APP/PER composites gives better flame retardancy than that of EPDM/PP/APP/PER composites. TGA and RT‐FTIR studies indicated that an interaction occurs among APP, PER, and EPDM/PP. The incorporation of CeP improved the mechanical properties of the materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA.  相似文献   

4.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

5.
Summary : Phosphorus-nitrogen intumescent product (R2000) was filled into polypropylene (PP) as a flame retardant. The neat PP and flame-retarded PP blends were studied for their structural and mechanical properties after verification of the flame retardancy character of blends. In this paper, the influence of incorporation of different amount (5%, 10%, 15%, 20%, and 25%) of R2000 was studied. The flame retardancy is evaluated by limiting oxygen index (LOI) value, which is enhanced from 17.5 for pure PP to 22.7 for the blend comprising 15% intumescent product, phosphorus-nitrogen based (R2000). The thermal degradation behaviour of the PP/R2000 blends was investigated using thermogravimetric analysis (TGA) under nitrogen (N2) and oxygen (O2) atmospheres. The influence of the R2000 on the PP crystallization was examined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Further, the mechanical properties of the materials were studied by dynamic mechanical analysis (DMA). The incorporation of the flame retardant had no effect on the crystallization of the neat polymer and the mechanical properties of the materials remained unaffected.  相似文献   

6.
A new intumescent flame retardant (PSiNII), which contains silicon, phosphorus, and nitrogen elements, has been synthesized and incorporated into polypropylene (PP). Its effect on the properties of PP is investigated based on flame retardancy, thermal properties, mechanical properties, and morphologies. The flame retardancy is evaluated by the limiting oxygen index value. The thermal properties (oxidative behaviors and thermal stability) are investigated by thermogravimetric analysis under nitrogen and air atmosphere. The mechanical properties are researched based on the maximum tensile stress and relative strain at break. The morphologies of PP/PSiNII are studied by the scanning electron micrograph. Their flame retardancy and thermal stability are improved by introducing PSiNII. PP/PSiNII blends can achieve high fire performance and keep high mechanical property at the same time. During a fire, the melt‐dripping behaviors of PP‐containing PSiNII are improved. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2548–2556, 2005  相似文献   

7.
A hyperbranched polyamine was prepared using an A2 + B3 approach. It acted as a hyperbranched charring and foaming agent (HCFA) in combination with ammonium polyphosphate (APP) to form a new intumescent flame retardant (IFR) system for polyamide 6 (PA6). Effect of HCFA on flame retardant and thermal degradation properties of IFR‐PA6 was investigated by limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter, and thermogravimetric analysis (TGA) tests. The IFR system presented the most effective flame retardancy in PA6 when the weight ratio of APP to HCFA was 2:1. The LOI value of IFR‐PA6 could reach 36.5 with V‐0 rating when the IFR loading was 30 wt%. Even if the loading decreased to 25 wt%, IFR‐PA6 could still maintain V‐0 rating with an LOI value of 31. TGA curves indicated that APP would interact with both PA6 and HCFA in PA6/APP/HCFA composite under heating. The interaction between APP and HCFA improved the char formation ability of IFR system and then much more char was formed for PA6/APP/HCFA composite than for PA6/APP. Therefore, better flame retardancy was achieved. Moreover, the structure and morphology of char residue were studied by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results indicated that compact and foaming char layer containing P‐O‐C structure was formed for PA6/APP/HCFA system during combustion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Addition of Ammonium Polyphosphate/Polyamide-6 system is known to provide flame retardancy in many polymers blends via an intumescent process. Particulate fillers (talc and calcium carbonate) are used in large quantities in PP. Combination of fillers in PP can modify the properties of the polymeric matrix. This study investigates the effect of fillers (talc and calcium carbonate) on the fire performance of the Polypropylene/Ammonium polyphosphate/Polyamide-6 blend. It is shown that the fire performance strongly depends on the nature of the filler used. Talc increases and calcium carbonate decreases in the fire performance of the blend.  相似文献   

9.
The flame retardancy mechanisms of poly(1,4‐butylene terephthalate) (PBT) containing microencapsulated ammonium polyphosphate (MAPP) and melamine cyanurate (MC) were investigated via pyrolysis analysis (thermogravimetric analysis (TGA), real‐time Fourier transform infrared (FTIR), TG‐IR), cone calorimeter test, combustion tests (limited oxygen index (LOI), UL‐94), and residue analysis (scanning electron microscopy (SEM)). A loading of 20 wt% MC to PBT gave the PBT composites an LOI of 26%, V‐2 classification in UL‐94 test and a high peak heat release rate (HRR) in cone calorimeter test. Adding APP to PBT/MC composites did not improve their flame retardancy. In comparison with the addition of ammonium polyphosphate (APP) to PBT, MAPP with silica gel shell and MAPP with polyurethane shell both promoted the intumescent char‐forming and improved the flame retardancy of PBT through different mechanisms in the presence of MC. These two halogen‐free PBT composites with V‐0 classification according to UL‐94 test were obtained; their LOI were 32 and 33%, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
<正>The effect of ammonium sulfamate(AS) content on the flame retardancy of polyamide 6(PA6) was studied.It is found that the limiting oxygen index(LOI) of PA6 increases with the increase of AS content and the flame retardancy of PA6 is significantly improved.The morphology of the residues after combustion was examined by means of scanning electron microscopy(SEM).SEM results show that AS facilitates the formation of the intumescent char layer with honeycomb-like structure,which inhibits the transfer of heat and mass,and thus improves the flame retardancy of PA6.The thermal degradation of AS flame retarded PA6 was studied by thermogravimetric analysis(TGA).The Kissinger method was applied to estimate the activation energy(E_a) of the degradation.The activation energy of the thermal degradation of PA6 decreases by adding AS,indicating that AS can promote the degradation of PA6.  相似文献   

11.
Modified intumescent flame retardants (MIFRs) and polysiloxane (APID) have been used in combination to enhance the flame retardancy of polypropylene (PP). The IFR system was composed of melamine (MEL), ammonium polyphosphate (APP) and pentaerythritol (PER). Aimed to improve the thermal stability of the IFR and its dispersivity in PP, titanate coupling agent NDZ‐201 was used to modify the IFRs via ball milling. MIFRs and APID have a cooperative effect on the flame retardant properties of PP. With 25 wt.% of MIFR and APID, the flame retardant sample (PPMA) was rated V0 for UL‐94, the LOI value was 34.3%, and the peak heat release rate (PHRR) was reduced by 80% in cone calorimeter test. In addition, APID could improve the compatibility of MIFR with the PP matrix, thereby increasing the mechanical properties of PP blends. The flame retardant effect of APID and MIFR in PP was presented in the condensed phase resulting in a rigid, thermally stable and expanded carbon layer due to different char structures.  相似文献   

12.
Divalent and multivalent metallic compounds catalyze the flame retardancy performance of intumescent systems based on ammonium polyphosphate (APP) and pentaerythritol (petol) in poly(propylene) (PP). The catalytic effect is shown by increases in the oxygen index (OI) and UL‐94 ratings. The effect is exerted by small concentrations of the metallic compounds in the range of 0.1–2.5 wt% of the compositions. The effect increases with the concentration of the catalyst until a maximum is reached. At higher concentrations of the catalyst a decrease in the flame retardancy parameters is observed, accompanied in several cases by a degradation and discoloration of the composition. The catalyst replaces melamine in intumescent systems. Catalytic effectiveness is defined and calculated for a number of compounds. Thermogravimetric parameters, such as initial decomposition temperature, temperature of the transition point and residue‐after‐transitions (RAT) change in parallel with the catalytic effect of the metal compound concentration. Metal compounds investigated include oxides, acetates, acetyl acetonates, borates and sulfates of Mn, Zn, Mg, Al, Ca, Ba, V, Co, Ni, Cu, Mo, Zr, and Cr. Mechanistic considerations on the activity of the catalysts are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
A novel ionic liquid containing phosphorus ([PCMIM]Cl) was synthesized and characterized by FTIR, 1H NMR, 13C NMR and 31P NMR. Moreover, a new intumescent flame retardant (IFR) system, which was composed of [PCMIM]Cl and ammonium polyphosphate (APP), was used to impart flame retardancy and dripping resistance to polypropylene (PP). The flammability and thermal behaviors of intumescent flame‐retarded PP (PP/IFR) composites were evaluated by limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA) and cone calorimeter test. It was found that there was an obvious synergistic effect between [PCMIM]Cl and APP. When the weight ratio of [PCMIM]Cl and APP was 1:5 and the total amount of IFR was kept at 30 wt%, LOI value of PP/IFR composite reached 31.8, and V‐0 rating was obtained. Moreover, both the peak heat release rate and the peak mass loss rate of PP/IFR composites decreased significantly relative to PP and PP/APP composite from cone calorimeter analysis. The TGA curves suggested that [PCMIM]Cl had good ability of char formation, and when combined with APP, it could greatly promote the char formation of PP/IFR composites, hence improved the flame retardancy. Additionally, the rheological behaviors and mechanical properties of PP/IFR composites were also investigated, and it was found that [PCMIM]Cl could also serve as an efficient lubricant and compatibilizer between APP and PP, endowing the materials with satisfying processability and mechanical properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
《先进技术聚合物》2018,29(9):2449-2456
In this work, a novel hyperbranched and phosphorus‐containing triazine derivative (HPCFA) is synthesized. HPCFA is used as charring‐foaming agent and combined with ammonium polyphosphate (APP) as intumescent flame retardant to flame retard polypropylene (PP). PP/HPCFA/APP composite can achieve limited oxygen index value of 31% and pass UL 94V‐0 rating by addition of 20 wt% HPCFA/APP (1/2, w/w). Besides, HPCFA is compared with another hyperbranched charring‐foaming agent (HCFA). HPCFA and HCFA have similar chemical structure, and their only difference is that HPCFA has phosphorus‐containing unit in the main chain compared with HCFA. HPCFA/APP system exhibits superior flame retardancy compared with HCFA/APP system. Char residue analysis demonstrates that HPCFA/APP system can form denser and more compact char layer in comparison with that of HCFA/APP system.  相似文献   

15.
Low flame retardant efficiency is a key bottleneck for currently available retardants against the flammable polypropylene (PP). Herein, the organically modified montmorillonite (OMMT) was utilized as a synergist for our previously reported intumescent flame retardant (IFR) that was constructed from ammonium polyphosphate (APP) and hyperbranched charring foaming agent (HCFA) to further enhance the retardant efficiency against PP. The resultant's combustion behavior was thoroughly investigated by cone calorimetry, limiting oxygen index (LOI), vertical burning test (UL‐94), and scanning electron microscopy (SEM). The results showed that 20% addition of IFR with OMMT showed a positive effect and improved the flame retardancy of the PP systems. Especially, addition of 2 wt% OMMT obviously increased the LOI values of PP systems with 20% total loading flame retardants from 29% to 31.5% and the samples meet V‐0 rating as well as the reduction of the heat release rate (HRR), total heat release (THR), CO2, and CO production occurred. On the other hand, the SEM images were also revealed that OMMT initiated a dense and strong char on the surface of the material, which resulted in efficient flame retardancy of PP matrix during combustion. In addition, thermal degradation behavior discussed by thermogravimetric analysis (TGA) indicated that OMMT could improve the thermal stability of PP systems under high temperature, and promoted char residues of PP/IFR systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
邓聪  王玉忠 《高分子科学》2015,33(2):203-214
To improve the flame-retardant efficiency and water resistance of ammonium polyphosphate(APP), the UV-curable pentaerythritol triacrylate(PETA) was used to microencapsulate APP via the UV curing polymerization method. The prepared PETA-microencapsulated APP(PETA-APP) was characterized by Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), and thermogravimetric(TG) analysis. PETA-APP was used as intumescent flame retardant(IFR) alone to flame retard polypropylene(PP). The water resistance of PP/PETA-APP composites was investigated, and the effect of PETA on the combustion behaviors of PP/APP composites was studied through limiting oxygen index(LOI), vertical burning test(UL-94) and cone calorimeter(CC) test, respectively. With 40 wt% of PETA-APP, the PP/PETA-APP system could achieve a LOI value of 30.0% and UL-94 V-0 rating after treatment in hot water for 168 h, while the LOI value of the system containing 40 wt% uncoated APP was only 19.2%, and it failed to pass the UL-94 rating. CC test results showed that the heat release rate(HRR), mass loss rate(MLR) and smoke production rate(SPR) of PP/PETAAPP system decreased significantly compared with PP/APP system, especially the peak of HRR was decreased by 51.4%. The mechanism for the improvement of flame reatardancy for PP/PETA-APP composites was discussed based on FTIR and X-ray photoelectron spectroscopy(XPS) tests. All these results illustrated that simultaneous improvement of flame retardancy and water resistance for PP/APP was achieved through coating UV-curable PETA onto APP.  相似文献   

17.
The functions of nanoclay and three different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), and boron silicon containing preceramic oligomer (BSi), were studied to improve the flame retardancy of polypropylene (PP)‐nanoclay‐intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis (TGA), and cone calorimeter. According to the results obtained, the addition of 20 wt% intumescent flame retardant (IFR) improved the flame retardancy by increasing the char formation. Addition of clay slightly increases the LOI value and reduces the maximum heat release rate (HRR). Addition of clay also increases the barrier effect due to intumescent char, especially in thin samples. Boron compounds show their highest synergistic effect at about 3 wt% loading. According to UL‐94 test and LOI test, 3 wt% ZnB containing composite shows the highest rating (V0) and BPO4 containing sample shows the highest LOI value (26.5). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
An intumescent system consisting of ammonium polyphosphate (APP) as an acid source and blowing agent, pentaerythritol (PER) as a carbonific agent and natural zeolite (clinoptilolite, Gördes II) as a synergistic agent was used in this study to enhance flame retardancy of polypropylene (FR-PP). Zeolite was incorporated into flame retardant formulation at four different concentrations (1, 2, 5, and 10 wt%) to investigate synergism with the flame retardant materials. Filler content was fixed at 30 wt% of total amounts of flame retardant PP composites. Zeolite and APP were treated with two different coupling agents namely, 3-(trimethoxysilyl)-1-propanethiol and (3-aminopropyl)-triethoxysilane for investigation of the influence of surface treatments on mechanical properties and flame retardant performance of composites. Maleic anhydride grafted polypropylene (MAPP) was used for making polypropylene hydrophilic. Flammability of FR-PP composites was measured by the determination of limiting oxygen index (LOI). The LOI values reached to a maximum value of 41% for mercapto silane treated APP:PER (2:1) PP composite containing 5 wt% zeolite. The tensile strength of composites was increased by the addition of MAPP and elongation at break of composites was increased with silane treatments.  相似文献   

19.
Variable amounts of transition metal oxides (MO), such as MnO2, ZnO, Ni2O3, etc., were incorporated into blends of polypropylene (PP)/ammonium polyphosphate (APP)/dipentaerythritol (DPER) with the aim of studying and comparing their effects with main‐group MO on intumescent flame retardance (IFR). The PP/IFR/MO composites were prepared using a twin‐screw extruder, and the IFR behavior was evaluated through oxygen index and vertical burning tests. The progressive enhancement of flame retardancy has proved to be strongly associated with the interaction between APP and MO. With the aid of thermogravimetry (TG) analysis, Fourier transform infrared (FTIR) spectra and scanning electron microscopy, Ni2O3 has been shown to be the most effective among the aforementioned three MO. The flame‐retardant mechanism of the IFR system is also discussed in terms of catalytic charring, which relates to complex formation through the d‐orbitals of the transition metal elements. It is considered that the melt viscosity of a PP/APP/DPER blend containing Ni2O3 corresponds well to the gas release with increasing temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Poly (diallyldimethylammonium chloride) (PDDA) and ammonium polyphosphate (APP) deionized chloride ions and ammonium ions by ionizing in aqueous solution respectively, then combined to form poly (diallyldimethylammonium) and polyphosphate (PAPP) polyelectrolyte complexes as an all‐in‐one flame retardant for polypropylene and its composites were characterized by Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy. One flame retardant system composed of PAPP and PP, the other flame retardant system composed of PAPP, Polyamide‐6 (PA6) and PP were tested by limiting oxygen index (LOI), UL‐94, cone calorimeter tests and thermogravimetric analysis (TGA) and compared with pure PP. The results showed that the LOI value of PP/PAPP composite can reach 27.5%, and UL‐94 V‐2 rating can be reached at 25 wt% PAPP loading. Meanwhile the cone calorimetry results displayed that the peak heat release rate (PHRR) and total heat release (THR) were reduced up to 69.3% and 22.5%, respectively, compared with those of pure PP. After adding 5 wt% PA6, the carbon source missing due to the early PAPP decomposition can be made up, and PHRR and THR can be further reduced slightly. The flame retardant mechanism of PAPP was studied by FTIR spectroscopy and X‐ray photoelectron spectroscopy. Six‐membered ring of C─N containing conjugate double bonds, cross‐linked phosphate structure formed stable, intumescent, compact char layer which greatly improved the flame retardancy of PP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号