首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graft copolymers with a polyimide backbone and poly(methyl methacrylate) side chains are investigated in dilute chloroform and ethyl acetate solutions via the methods of molecular hydrodynamics and optics. Copolymer samples are prepared through the “grafting from” method via atom-transfer radical polymerization with a multicenter polyimide macroinitiator. In solutions of copolymers with low degrees of functionalization Z (40%), supermolecular structures are formed as a result of interactions between the polyimide backbones. In samples with Z → 100%, the backbone is well screened by side chains; therefore, molecular solutions are formed in both solvents. The hydrodynamic and conformational behavior of samples with high functionalization degrees changes after the transition from ethyl acetate to chloroform owing to the different thermodynamic qualities of the solvents with respect to the copolymer components. In both solvents, the backbone tends to avoid contact with a poor solvent. This effect is more pronounced in the case of ethyl acetate. Macromolecules of the studied graft copolymers are characterized by high equilibrium rigidities (>40 nm) that are 10 times higher than the corresponding characteristics of aromatic polyimides.  相似文献   

2.
Graft copolymers with the main polyimide chain and side chains of poly(n-butyl acrylate), poly(tert-butyl acrylate), poly(methyl methacrylate), poly(tert-butyl methacrylate), polystyrene, and polystyrene-block-poly(methyl methacrylate) were synthesized by atom transfer radical polymerization on the multicenter polyimide macroinitiators in the presence of the halide complexes of univalent copper with nitrogen-containing ligands. Polymerization of metha-crylates is most efficiently developed on the polyimide macroinitiators. The obtained graft copolymers initiate the secondary polymerization (“post-polymerization”) of methyl methacrylate. The conditions of detachment of side chains of graft polymethacrylates that do not involve the ester groups of their monomeric units were found. The molecular mass characteristics of the graft copolymers and isolated polymers, being the detached side chains of the copolymers, were determined. The detached side chains of different chemical structures have low values of the polydispersity index. The procedure developed was used for the preparation of new graft polyimides with side chains of poly-4-nitro-4′-[N-methylacryloyloxyethyl-N′-ethyl]amino-azobenzene that cause the nonlinear optical properties and with the side chains of poly(N,N-dimethylaminoethyl methacrylate) that cause the thermosensitive properties of the copolymers.  相似文献   

3.
The atom-transfer radical polymerization of methyl methacrylate and tert-butyl methacrylate with a polyimide multicenter macroinitiator in the presence of a CuCl-2,2′-bipyridine catalytic system is investigated. The kinetic features of the process, the molecular-weight characteristics of the formed side chains, and the post-polymerization of methyl methacrylate with graft polyimides containing polymethacrylate side chains are studied. The conditions of controlled polymerization yielding graft copolyimides with narrowly dispersed living poly(methyl methacrylate) or poly(tert-butyl methacrylate) side chains of variable lengths are determined.  相似文献   

4.
Novel macromolecular brushes with a polyimide backbone and diphilic diblock copolymer side chains consisting of a hydrophilic block of poly(methacrylic acid) adjacent to the backbone and the outer hydrophobic block of poly(methyl methacrylate) are synthesized. The synthesis includes the grafting of poly(tert-butyl methacrylate) to the polyimide chain followed by the polymerization of methyl methacrylate on the graft copolyimide as a branched multicenter macroinitiator. Brushes with diphilic side chains are obtained via the acidic hydrolysis of ester groups in the first block of side chains. The grafting polymerization of methacrylates is performed according to the “grafting from” approach by the method of pseudoliving atom transfer radical polymerization using two methodologies of polymerization activated by either copper- or iron-containing complexes. Conditions providing the controlled regime of the polymerization processes under study are found, and pathways for the targeted regulation of the degree of polymerization of methacrylate blocks and their grafting density are determined. As is shown by dynamic light scattering and transmission electron microscopy, the macromolecules of brushes with diphilic side chains form in ethanol homotypic, obviously spherical, supramolecular micellar structures with hydrodynamic radii in the range from 40 to 120 nm depending on the length and grafting density of the two blocks in diphilic side chains.  相似文献   

5.
A soluble aromatic polyimide was chloromethylated via a reaction with chloromethyl methyl ether in the presence of tin(IV) chloride to produce a new starting material for the modification of aromatic polyimides. The chemical structure of the resulting polymer was confirmed by 1H NMR and Fourier transform infrared spectroscopy. The maximum number of chloromethyl groups per repeat unit was 1.81. The chloromethylated polyimide was stable up to 250 °C and soluble in both chloroform and tetrahydrofuran. So that its utilization for further modification could be demonstrated, cinnamic acid was reacted with the formed polyimide, and it produced a new photosensitive polyimide with a cinnamoyl side chain. The photosensitivity of the resulting polyimide was investigated with ultraviolet spectroscopic methods. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 22–29, 2003  相似文献   

6.
For the purpose of the prevention of the environmental pollution and the simplification of reaction process, the scale-up radical graft polymerization of vinyl monomers onto nano-sized silica surface initiated by azo groups and peroxycarbonate groups previously introduced onto the surface in the solvent-free dry-system was investigated. The introduction of azo groups onto the silica surface was achieved by the reaction of surface amino groups with 4,4′-azobis(4-cyanopentanoic acid chloride). On the other hand, the introduction of peroxycarbonate groups onto the silica surface was achieved by Michael addition of surface amino groups to t-butylperoxy-2-methacryloyloxyethylcarbonate. The graft polymerization of vinyl monomers onto the surface was successfully achieved by splaying monomers to nano-sized silica having azo and peroxycarbonate groups in solvent-free dry-system. It is interesting to note that the formation of ungrafted polymer was depressed in comparison with graft polymerization in solution: the grafting efficiency was 90-95%. In addition, in the solvent-free dry-system, the grafting of copolymer having pendant peroxycarbonate groups onto the nano-sized silica surface and the radical postgraft polymerization of styrene initiated by the pendant initiating groups of the grafted copolymer chain on the silica surface was investigated.  相似文献   

7.
通过活性正离子聚合与原子转移自由基聚合(ATRP)转换合成了β-蒎烯与甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、苯乙烯(St)的新型接枝共聚物.首先以α-氯代乙苯/TiCl4/Ti(OiPr)4/nBu4NCl体系引发β-蒎烯活性正离子聚合,合成预定分子量大小和窄分子量分布的聚β-蒎烯,然后经N-溴代琥珀酰亚胺(NBS)定量溴化,得到溴化聚β-蒎烯大分子引发剂(Br/β-蒎烯链节摩尔比为0.5).然后将该大分子引发剂与溴化亚铜(CuBr)/2,2′-联吡啶(bpy)复合,引发MMA、BA、St进行ATRP接枝聚合.接枝反应显示一级动力学特征,且产物的分子量及分子量分布可控,表明上述ATRP接枝聚合反应具有可控聚合特征.接枝产物的结构经1H-NMR分析得到进一步证实.  相似文献   

8.
Well defined graft copolymers are prepared by “grafting from” atom transfer radical polymerization (ATRP) at room temperature (30 °C). The experiments were aimed at grafting methacrylates and styrene at latent initiating sites of polystyrene. For this purpose, the benzylic hydrogen in polystyrene was subjected to allylic bromination with N‐bromosuccinimide and azobisisobutrylnitirle to generate tertiary bromide ATRP initiating sites (Br? C? PS). The use of Br? C? PS with lesser mol % of bromide initiating groups results in better control and successful graft copolymerization. This was used to synthesize a series of new graft copolymers such as PS‐g‐PBnMA, PS‐g‐PBMA, PS‐g‐GMA, and PS‐g‐(PMMA‐b‐PtBA) catalyzed by CuBr/PMDETA system, in bulk, at room temperature. The polymers are characterized by GPC, NMR, FTIR, TEM, and TGA. Graft copolymerization followed by block polymerization enabled the synthesis of highly branched polymer brush, in which the grafting density can be adjusted by appropriate choice of bromide concentration in the polystyrene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3818–3832, 2007  相似文献   

9.
Chloro (Cl)‐ and bromo (Br)‐functionalized macroinitiators were successfully prepared from the softwood hemicellulose O‐acetylated galactoglucomannan (AcGGM) and then explored and evaluated with respect to their ability and efficiency of initiating single electron transfer‐living radical polymerization (SET‐LRP). Both halogenated species effectively initiate SET‐LRP of an acrylate and a methacrylate monomer, respectively, yielding brushlike AcGGM graft copolymers, where the molecular weights are accurately controlled via the monomer:macroinitiator ratio and polymerization time over a broad range: from oligomeric to ultrahigh. The nature of the halogen does not influence the kinetics of polymerization strongly, however, for acrylate graft polymerization, AcGGM‐Cl gives a somewhat higher rate constant of propagation, while methacrylate grafting proceeds slightly faster when the initiating species is AcGGM‐Br. For both monomers, the macroinitiator efficiency is superior in the case of AcGGM‐Br. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Densely grafted copolymers were synthesized using the “grafting from” approach via the combination of reversible addition‐fragment chain transfer polymerization (RAFT) and atom transfer radical polymerization (ATRP). First, a novel functional monomer, 2,3‐di(2‐bromoisobutyryloxy)ethyl acrylate (DBPPA), with two initiating groups for ATRP was synthesized. It was then polymerized via RAFT polymerization to give macroinitiators for ATRP with controlled molecular weights and narrow molecular weight distributions. Last, ATRP of styrene was carried out using poly(DBPPA)s as macroinitiators to prepare comblike poly(DBPPA)‐graft‐polystyrenes carrying double branches in each repeating unit of backbone via “grafting from” approach. Furthermore, poly(DBPPA)‐graft‐[polystyrene‐block‐poly(t‐BA)]s and their hydrolyzed products poly(DBPPA)‐graft‐[polystyrene‐block‐poly(acrylic acid)]s were also successfully prepared. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 362–372, 2008  相似文献   

11.
A series of poly(N‐isopropylacrylamide)‐co‐poly(Nε‐benzyloxycarbonyl‐L ‐lysine) graft copolymers (PNIPAm‐co‐PZLLys) with different side chains (degree of polymerization, DP = 5~40) and unit ratios (from 30 to 70 mol %) were prepared via free radical polymerization, followed by cleaving benzyloxycarbonyl groups (Z groups) to obtain the double hydrophilic graft copolymer, poly(N‐isopropylacrylamide)‐co‐poly(L ‐lysine) (PNIPAm‐co‐PLLys). The pH‐ and temperature‐response properties of the graft copolymers in aqueous solution were studied. The experimental results indicate L15‐N30 and L15N‐70, that is, the PNIPAm‐co‐PLLys having the poly(L ‐lysine) of DP = 15 as side chains as well as 30 and 70 mol %, respectively, of PNIPAm as backbone, have coil‐to‐helix transitions from pH 6 to pH 12 at room temperature and form uniform nanoscale micelle‐like dispersions in aqueous solution at pH 12. The graft copolymers also could form uniform and nanoscale micelle‐like structures at 50 °C in pH 6 buffer solution due to slightly polymer aggregation. With temperature and pH increased, both the deprotonated PLLys side chains and PNIPAm backbone become hydrophobic, leading to polymer precipitation. These results illustrate that a double tunable hydrophilic graft copolymer had been successfully synthesized via a simple radical polymerization, and could form micelles without serious polymer aggregation at a lower pH and a higher temperature. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Poly(cis‐cyclooctene) is synthesized via ring‐opening metathesis polymerization in the presence of a chain‐transfer agent and quantitatively hydrobrominated. Subsequent graft polymerization of tert‐butyl acrylate (tBA) via Cu‐catalyzed atom transfer radical polymerization (ATRP) from the non‐activated secondary alkyl bromide moieties finally results in PE‐g‐PtBA copolymer brushes. By varying the reaction conditions, a series of well‐defined graft copolymers with different graft densities and graft lengths are prepared. The maximum extent of grafting in terms of bromoalkyl groups involved is approximately 80 mol%. DSC measurements on the obtained graft copolymers reveal a decrease in Tm with increasing grafting density.  相似文献   

13.
A series of well‐defined amphiphilic graft copolymers bearing hydrophilic poly(ethylene oxide) (PEO) side chains with tunable grafting densities were synthesized by atom transfer nitroxide radical coupling (ATNRC) reaction using CuBr/PMDETA as catalytic system via the grafting‐onto strategy. PEO side chains were linked to α‐C of carbonyl of polyacrylate‐based backbone, not to the ester side groups as usual, so that every repeating unit of the backbone possessed a pendant steric bulky tert‐butyl group. The critical micelle concentrations of the obtained amphiphilic graft copolymers in aqueous media determined by fluorescence probe technique using pyrene as probe increased with the raising of molecular weights. These amphiphilic graft copolymers with novel chemical structure showed unprecedented diverse nanostructures visualized by transmission electron microscopy in aqueous media and micellar morphologies varied with the changing of experiment parameters. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A polyimide‐graft‐polystyrene (PI‐g‐PS) copolymer with a polyimide backbone and polystyrene side chains was synthesized by the “grafting from” method using styrene polymerization on a polyimide multicenter macroinitiator via ATRP mechanism. The side chain grafting density z = 0.86 of PI‐g‐PS is rather high for graft‐copolymers synthesized by the ATRP method. Molecular characteristics and solution behavior of PI‐g‐PS were studied in selective solvents using light scattering and viscometry methods. In all solvents, the backbone tends to avoid contact with a poor solvent. To describe the conformation and hydrodynamic properties of PI‐g‐PS macromolecules in thermodynamically good solvents for side chains and PI‐g‐PS, the wormlike spherocylinder model is used. Macromolecules of the studied graft‐copolymer are characterized by high equilibrium rigidities (Kuhn segment length >20 nm). In Θ‐conditions, PI‐g‐PS macromolecules may be modeled by a rigid prolate ellipsoid of revolution with a low asymmetry form and a collapsed backbone as the ellipsoid core. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1539–1546  相似文献   

15.
The surface-initiated atom-transfer radical polymerization (ATRP) technique was applied to the graft polymerization of methyl methacrylate (MMA) and N-isopropylacrylamide (NIPAm) from three-dimensionally ordered macroporous cross-linked polystyrene (3DOM CLPS) on which the initiator, halogen atom was immobilized onto the pore wall of 3DOM CLPS by chloromethylation. FT-IR and TG-DWA analyses confirm that the graft polymerization of MMA and NIPAm via ATRP had been taken place at the pore wall of 3DOM CLPS. The initiating efficiency of chloromethyl groups was calculated according to the data of TGA-titration, revealed that the benzyl chloride is not only distributed on the surface of the pore walls but also must be present throughout the inner of the cross-linked polystyrene matrix. SEM analyses show that the grafted layers are smooth and homogeneous, and the ordered structure is well preserved after polymerization. By the adjustment of the graft polymerization time, the thickness of grafted polymer layers can be controlled. The max thickness of grafted PMMA layer is 85 nm and the max thickness of grafted PNIPAm layer is 35 nm.  相似文献   

16.
This article discusses a facile and inexpensive reaction process for preparing polypropylene‐based graft copolymers containing an isotactic polypropylene (i‐PP) main chain and several functional polymer side chains. The chemistry involves an i‐PP polymer precursor containing several pendant vinylbenzene groups, which is prepared through the Ziegler–Natta copolymerization of propylene and 1,4‐divinylbenzene mediated by an isospecific MgCl2‐supported TiCl4 catalyst. The selective monoenchainment of 1,4‐divinylbenzene comonomers results in pendant vinylbenzene groups quantitatively transformed into benzyl halides by hydrochlorination. In the presence of CuCl/pentamethyldiethylenetriamine, the in situ formed, multifunctional, polymeric atom transfer radical polymerization initiators carry out graft‐from polymerization through controlled radical polymerization. Some i‐PP‐based graft copolymers, including poly(propylene‐g‐methyl methacrylate) and poly(propylene‐g‐styrene), have been prepared with controlled compositions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 429–437, 2005  相似文献   

17.
Polymers containing hydrolytically labile trialkylsilyl ester side groups were synthesised via a conventional and a controlled radical polymerization. The trialkylsilyl methacrylate monomer unit was chosen for its capacity to hydrolyse into basic, acid or sea water varying the hydrophilic character of the resulting polymer backbone with time. The hydrolysis or saponification reaction of the ester bond of the trialkylsilyl methacrylate was monitored through a 1H NMR study showing the formation of siloxane side-products. Several copolymers and polymer blends were prepared as matrixes for controlled erodible systems. Their capacity to hydrolyse was demonstrated through SEM investigations with selective dissolution of free films containing hydrolysable copolymers and PMMA blends. Well-defined random and diblock copolymers with methyl methacrylate were investigated to show the effect of the microstructure on the erosion properties of the corresponding coatings. Poly(methyl methacrylate-b-tert-butyldimethylsilyl methacrylate) diblock copolymers synthesised through the RAFT process showed a better control of the erosion with a constant erosion rate over a long-time service in sea water at pH = 8.2. In addition, experiments showed that the erosion rate could be modulated by varying the molar proportion of hydrolysable side groups onto the copolymer backbone and the weight amount of copolymers mixed with PMMA in toluene solution.  相似文献   

18.
The results of study on the radical polymerization of N-vinyl-2-pyrrolidone containing a dissolved polyimide, an aromatic polyamide, and a polyarylate are presented. Formation of both poly(vinylpyrrolidone) homopolymer and its copolymers with the above condensation polymers is detected. The obtained (co)polymers differ from poly(vinylpyrrolidone) in heat resistance and solubility. It was shown that polyimides can be prepared in a N-vinyl-2-pyrrolidone medium followed by in situ polymerization of the latter.  相似文献   

19.
A series of copolymers composed of methoxy poly(ethylene glycol) and a hydrophobic block of poly(ɛ-caprolactone-co-propargyl carbonate) grafted with poly(2-[dimethylamino]ethyl methacrylate) was synthesized by combining ring opening polymerization, azide-alkyne click reaction, and atom transfer radical polymerization (ATRP). Well-defined copolymers with a target composition and a tailored structure were achieved via the grafting from approach by using a single catalytic system for both click reaction and ATRP. Kinetic studies demonstrated the controlled/living character of the employed polymerization methods. The thermal properties and self-assembly in aqueous medium of the graft copolymers were dependent on their composition. The resulting polymeric materials showed low cytotoxicity toward L929 cells, demonstrating their potential for biomedical applications. This type of materials containing cationic side chains tethered to biocompatible and biodegradable segments could be the basis for promising candidates as drug and gene delivery systems.  相似文献   

20.
After the protection of partial hydroxyl groups with trimethylsilyl (TMS) groups, hydroxypropyl cellulose becomes soluble in organic solvents, and the number of hydroxyl groups as initiating groups can be controlled. As a result, a new brushlike graft poly(?‐caprolactone) can be prepared with hydroxypropyl cellulose as the backbone polymer by homogeneous ring‐opening graft polymerization and deprotection. The protection and deprotection of the TMS group during the entire procedure were carefully monitored with Fourier transform infrared (FTIR) and NMR, and the final graft copolymers were characterized with FTIR, 1H NMR, 13C NMR, gel permeation chromatography, and differential scanning calorimetry. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 273–280, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号