首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a robust image processing technique for bubbly flow measurement over a wide range of void fractions. The proposed algorithm combines geometrical, optical and topological information recorded with high speed cameras to separate and reconstruct the overlapping bubbles. The common difficulties such as overlapping, irregular bubble shape, surface deformation and large clustering in digital image processing are solved by combining different information based on a preset decision table and flow chart. Test with synthetic bubble images is performed to evaluate the reliability of the algorithm and quantify the uncertainty of the data. The result shows that the proposed algorithm can accurately measure bubbly flows with void fraction up to 18% for large bubbles. Four runs of bubbly flow images in a 30 mm  ×  10 mm rectangular channel are then recorded by three high speed cameras. The area-averaged void fraction of these test runs range from 2.4% to 9.1%. The axial and lateral distributions of bubble number density are obtained by the present algorithm for studying the characteristics of these flows.  相似文献   

2.
Understanding bubble dynamics is critical to the design and optimization of two-phase microchannel heat sinks. This paper presents a hybrid experimental and computational methodology that reconstructs the three-dimensional bubble geometry, as well as provides other critical information associated with nucleating bubbles in microchannels. Rectangular cross-section silicon microchannels with hydraulic diameters less than 200 μm were fabricated with integrated heaters for the flow experiments, and the working liquid used was water. Bubbles formed via heterogeneous nucleation and were observed to grow from the silicon side walls of the channels. Two-dimensional images and two-component liquid velocity field measurements during bubble growth were obtained using micron-resolution particle image velocimetry (μPIV). These measurements were combined with iterative three-dimensional numerical simulations using finite element software, FEMLAB. The three-dimensional shape and location of the bubble were quantified by identifying the geometry that provided the best match between the computed flow field and the μPIV data. The reconstructed flow field through this process reproduced the experimental data within an error of 10–20%. Other important information such as contact angles and bubble growth rates can also be estimated from this methodology. This work is an important step toward understanding the physical mechanisms behind bubble growth and departure.  相似文献   

3.
A correlation-based processing algorithm for bubble identification by a planar fluorescence for bubble imaging (PFBI) technique is presented in this paper. The algorithm includes procedures to identify bubble positions and sizes, as well as to track bubbles and correct bubble displacement vectors. Moreover, several schemes for calculation time optimisation were realised to achieve a reliable calculation time. The developed algorithm identifies and tracks overlapping bubble images or images with non-uniform intensity distributions. The employed correlation and iterative passing approach provides sub-pixel accuracy of bubble displacement estimation. In addition, the presented algorithm for bubble ring detection can be easily applied to shadow photography images of bubbles, after the application of a derivative filter. The PFBI technique, combined with the particle image velocimetry and particle tracking velocimetry algorithms, was applied for the experimental study of bubbly free jet two-phase flows at Re = 12,000. Four cases of volumetric gas content in the jet core were studied: 0, 1.2, 2.4 and 4.2%, with the same mean bubble diameter—0.85 mm. The developed technique measures two-dimensional distributions of instantaneous void fractions, as well as both gaseous and liquid-phase velocities. Consequently, the mean void fraction and velocity fields and a set of second-order statistical moments were obtained, including correlations of void fraction and velocity pulsations. It was shown that the increase in volumetric gas content leads to the suppression of liquid-phase velocity fluctuations in the jet mixing layer.  相似文献   

4.
The study is an examination of two-phase dispersed air bubble flow about a cylindrical conductor emitting a constant heat flux. The technique of Particle Image Velocimetry is utilized in order to obtain a full-field non-invasive measurement of the resulting bubbly flow velocity field. The employed approach utilizes a flow visualization technique in which the instantaneous velocity profile of a given flow field is determined by digitally recording particle or bubble images within the flow over multiple successive video frames and then conducting a completely computational analysis of the data. The use of particle tracking algorithms which perform a point-by-point matching of seed images from one frame to the next allows construction of particle or bubble pathlines and instantaneous velocity field. Results were initially obtained for a synthetically created flow field and a single phase liquid convective field seeded with flow-following tracer particles. The method was additionally extended to measurements within a gas/liquid system in which bubble rise velocities over a substantial two-dimensional flow area were determined in order to demonstrate the effectiveness of the developed digital data acquisition and analysis methodology.A version of this paper was presented at the 12th Symposium on Turbulence, University of Missouri-Rolla, 24–26 September, 1990  相似文献   

5.
The effect of an internal turbulent bubbly flow on vibrations of a channel wall is investigated experimentally and theoretically. Our objective is to determine the spectrum and attenuation rate of sound propagating through a bubbly liquid flow in a channel, and connect these features with the vibrations of the channel wall and associated pressure fluctuations. Vibrations of an isolated channel wall and associated wall pressure fluctuations are measured using several accelerometers and pressure transducers at various gas void fractions and characteristic bubble diameters. A waveguide-theory-based model, consisting of a solution to the three-dimensional Helmholtz equation in an infinitely long channel with the effective physical properties of a bubbly liquid is developed to predict the spectral frequencies of the wall vibrations and pressure fluctuations, the corresponding attenuation coefficients and propagation phase speeds. Results show that the presence of bubbles substantially enhances the power spectral density of the channel wall vibrations and wall pressure fluctuations in the 250–1200 Hz range by up to 27 and 26 dB, respectively, and increases their overall rms values by up to 14.1 and 12.7 times, respectively. In the same frequency range, both vibrations and spectral frequencies increase substantially with increasing void fraction and slightly with increasing bubble diameter. Several weaker spectral peaks above that range are also observed. Trends of the frequency and attenuation coefficients of spectral peaks, as well as the phase velocities are well predicted by the model. This agreement confirms that the origin of enhanced vibrations and pressure fluctuations is the excitation of streamwise propagating pressure waves, which are created by the initial acoustic energy generated during bubble formation.  相似文献   

6.
Measurements of the cross-sectional distribution of the gas fraction and bubble size distributions were conducted in a vertical pipe with an inner diameter of 51.2 mm and a length of about 3 m for air/water bubbly and slug flow regimes. The use of a wire-mesh sensor obtained a high resolution of the gas fraction data in space as well as in time. From this data, time averaged values for the two-dimensional gas fraction profiles were decomposed into a large number of bubble size classes. This allowed the extraction of the radial gas fraction profiles for a given range of bubble sizes as well as data for local bubble size distributions. The structure of the flow can be characterized by such data. The measurements were performed for up to 10 different inlet lengths and for about 100 combinations of gas and liquid volume flow rates. The data is very useful for the development and validation of meso-scale models to account for the forces acting on a bubble in a shear liquid flow and models for bubble coalescence and break-up. Such models are necessary for the validation of CFD codes for the simulation of bubbly flows.  相似文献   

7.
Interfacial area transport equation (IATE) is considered promising to evaluate dynamic changes of the interfacial area concentration in gas–liquid two-phase flows, which is of significance in characterizing the interfacial structure of the flows. Efforts were made by the authors in the past on the implementation of the IATE into computational fluid dynamics codes, such as Fluent. However, it remained unclear whether the IATE model coefficients derived from one-dimensional IATE model calibrations can be applied to three-dimensional simulations. The current study aimed to examine, primarily by investigating the lateral profiles of phase distributions, the applicability of the coefficients obtained from the one-dimensional IATE model calibration to a three-dimensional simulation of bubbly flow in a pipe. In addition, effects of the lift force on the lateral phase distributions were studied. A new set of the IATE model coefficients was suggested for a three-dimensional bubbly flow simulation. Good agreement was obtained with the updated coefficients between the predicted and measured flow parameters.  相似文献   

8.
 Considerations for applying LDA to bubbly flows with bubbles about 3 to 4 mm in diameter were investigated by means of detailed experiments in the model geometry of a train of bubbles. Both forward scatter and backscatter LDA were studied. The validity of phase discrimination via burst amplitude was tested and special attention was paid to the impact of bubble interface response to the laser beams. Forward and backscatter measurements can be compared well. In both configurations, predominantly the liquid phase is “seen” by LDA. A bubble itself only leads to a velocity realization in special conditions. In those cases the Doppler shift is determined by the motion of the bubble interface which consists of the motion of the center of gravity of the bubble as well as shape oscillations. In backscatter bubbles only give velocity realizations when their “cheeks” pass through the measuring volume virtually perpendicularly. It is shown that the bubble-caused velocity realization frequency is very low for bubbles of the size used. Phase discrimination on burst amplitude does not hold. In ambient cases such as bubble columns one can assume that only the liquid phase is being studied. Received: 4 May 1998/Accepted: 30 September 1998  相似文献   

9.
 An experimental technique for the measurement of the local slip velocity of spherical bubbles is reported. It is based on the measurement of the local liquid velocity by an electrodiffusional method, and the bubble velocity by a specially adapted LDA (Laser Doppler anemometer) with a short measuring volume. The bubble velocity is measured taking into account the shift between the bubble centre and the centre of the LDA measuring volume. The slip velocity is obtained by subtracting the liquid velocity from the bubble velocity at the point corresponding to the bubble centre. The technique is applicable for flows with high velocity gradients. Results of the slip velocity measurements in an upward bubbly flow at laminar pipe Reynolds numbers are presented. Received: 25 July 1996/Accepted: 13 April 1998  相似文献   

10.
 A one-dimensional model is presented, which describes the transient two-phase flow in thin pipes during fast pressure drops and degassing by use of Eulerian and Lagrangian systems. The reduction in dimension is obtained by introduction of a geometry model for bubbly and slug flow regimes. The complete model includes the transient two-phase flow, bubble formation and bubble growth. The flow model predicts rising velocities of bubbles and plugs in arbitrary inclined highly accurate pipes. The mass transfer (diffusion) of the dissolved phase is calculated by the bubble growth model. The quality of the model was examined by simulation of experimental series, whereby water was depressurised from the saturation pressure of the dissolved gas mixture (air), by variation of saturation pressure, pressure gradient and pipe geometry. The results of numerical simulation fit the experimental data well. Received on 17 January 2000  相似文献   

11.
An experimental evaluation of a novel limited-angle-type ultra fast electron beam X-ray computed tomography approach for the visualization and measurement of a gas–liquid two-phase flow is reported here. With this method, a simple linear electron beam scan is used to produce instantaneous radiographic views of a two-phase flow in a pipe segment of a flow loop. Electron beam scanning can be performed very rapidly, thus a frame rate of 5 kHz is achieved. Radiographic projections are recorded by a very fast detector arc made of zink–cadmium–telluride elements. This detector records the X-ray radiation passing through the object with a sampling rate of 1 MHz. The reconstruction of slice images from the recorded detector data is a limited-angle problem since in our scanning geometry the object’s Radon space is only incompletely sampled. It was investigated here, whether this technology is able to produce accurate gas fraction data from bubbly two-phase flow. Experiments were performed both on a Perspex phantom with known geometry and an experimental flow loop operated under vacuum conditions in an electron beam processing box.  相似文献   

12.
 A non-intrusive technique to measure the two-dimensional distribution of line averaged void fraction in a two-phase flow is discussed. A CCD camera is used to measure the attenuation of light as it passes through a bubbly flow, and this attenuation is related to the bubble concentration. The technique is appropriate for microbubbly flows where the bubble size is much smaller than the area imaged by a single pixel and where there are many bubbles attenuating light within each pixel. The measurement system is calibrated by using a two-dimensional line source microbubble plume as a reference. Revised: 30 March 2000/Accepted: 14 April 2000  相似文献   

13.
Ultrafast X-ray tomography enables non-invasive imaging of gas-liquid flows with high spatial and temporal resolution. While it is relatively straightforward to extract e.g. gas fraction profiles from cross-sectional tomographic images, the extraction of bubble and gas-liquid interface information requires advanced image processing techniques. Thereby it is an important necessity to transform the temporal scale in the scanned sequences into a corresponding length scale for obtaining correct volumetric information. For bubbly flows this means that the velocity of the dispersed phase, e.g. the gas bubbles, has to be determined from dual-plane scans. A common and widely applied method to obtain gas phase velocities is cross-correlating the image sequences of the two scanning planes. This gives an averaged velocity for each position in the cross-section. In the present work, a new method is introduced, which determines the velocity of individual gas bubbles. This new method is termed as “bubble twinning method”, because it tries to identify twin-bubbles in both scanning planes. The developed algorithm compares essential bubble parameters, that is, volume, position and residence time in the slice, by applying a fuzzy-logic based membership function approach. The algorithm was tested for bubbly flow as well as slug flow conditions. Results are compared with established theoretical predictions as well as the cross-correlation method.  相似文献   

14.
由空压机提供的气体通过—排微小直径的喷嘴进入静止水体,形成水气两相流流场。在单相PIV和PTV技术的基础上,研究稀疏气液两相流情况下气泡的速度场分布。PIV算法采用快速傅立叶互相关分析法,而PTV算法需要获得每幅图像中每个气泡的形心,根据连续图像中的粒子对,计算速度。用PIV和PTV两种算法处理求出气泡的速度并对两种方法进行比较,其最终研究成果可应用于流体及多相流的流量测技术,提高我们进行低密度气液两相流相关研究的测量水平。同时为水气两相流的数值分析和理论研究提供流场测试的数据。  相似文献   

15.
The annular separation bubble around the inlet corner and the radial flow between two parallel disks were investigated by means of flow visualization and numerical simulations to gain an understanding of the features of axisymmetric separation and reattachment in the inlet region. For the case with a sharp corner, the radius of the reattachment point depends only on clearance ratio, independent of Reynolds number in the turbulent flow regime where the reattachment point fluctuates randomly. For the cases with a rounded corner, the radius of reattachment point and the height of the bubble decrease with increasing corner roundness. Received: 23 January 2001 / Accepted: 31 August 2001  相似文献   

16.
The effect of distributed bubble nuclei sizes on shock propagation in a bubbly liquid is numerically investigated. An ensemble-averaged technique is employed to derive the statistically averaged conservation laws for polydisperse bubbly flows. A finite-volume method is developed to solve the continuum bubbly flow equations coupled to a single-bubble-dynamic equation that incorporates the effects of heat transfer, liquid viscosity and compressibility. The one-dimensional shock computations reveal that the distribution of equilibrium bubble sizes leads to an apparent damping of the averaged shock dynamics due to phase cancellations in oscillations of the different-sized bubbles. If the distribution is sufficiently broad, the phase cancellation effect can dominate over the single-bubble-dynamic dissipation and the averaged shock profile is smoothed out.  相似文献   

17.
A methodology for resolving three-dimensional (3D) bubble fields using 3D synthetic aperture imaging (SA imaging) is developed and applied to the bubbly flows induced by a turbulent circular plunging jet. 3D SA imaging involves capturing entirely in-focus images in an array of cameras with multiple viewpoints, then reprojecting the images into the measurement volume and combining them post capture. The result is a stack of synthetically refocused images that span the measurement volume with each refocused image having a narrow focus on a particular plane. In this paper, bubble shadow images are captured by projecting diffuse backlight onto the measurement volume. 3D SA imaging is ideally suited to investigate optically dense multiphase flows due to the ability to reconstruct volumes that contain partial occlusions. Instantaneous bubble sizes and locations in the plunging jet bubble fields are extracted from the volumes using two feature extraction algorithms and presented for various jet heights. The data are compared with existing literature on bubble penetration depth and size distributions. A scaling law for the integrated air concentration as a function of depth below the free-surface is proposed. Coupled with scaling laws for a parameter describing the radius of the bubble cone and radial concentration profiles, this new scaling law can be used to determine the entire air concentration profile given a minimal number of single-point measurements.  相似文献   

18.
This study performed a survey on existing correlations for interfacial area concentration (IAC) prediction and collected an IAC experimental database of two-phase flows taken under various flow conditions in large diameter pipes. Although some of these existing correlations were developed by partly using the IAC databases taken in the low-void-fraction two-phase flows in large diameter pipes, no correlation can satisfactorily predict the IAC in the two-phase flows changing from bubbly, cap bubbly to churn flow in the collected database of large diameter pipes. So this study presented a systematic way to predict the IAC for the bubbly-to-churn flows in large diameter pipes by categorizing bubbles into two groups (group 1: spherical or distorted bubble, group 2: cap bubble). A correlation was developed to predict the group 1 void fraction by using the void fraction for all bubble. The group 1 bubble IAC and bubble diameter were modeled by using the key parameters such as group 1 void fraction and bubble Reynolds number based on the analysis of Hibiki and Ishii (2001, 2002) using one-dimensional bubble number density and interfacial area transport equations. The correlations of IAC and bubble diameter for group 2 cap bubbles were developed by taking into account the characteristics of the representative bubbles among the group 2 bubbles and the comparison between a newly-derived drift velocity correlation for large diameter pipes and the existing drift velocity correlation of Kataoka and Ishii (1987) for large diameter pipes. The predictions from the newly-developed two-group IAC correlation were compared with the collected experimental data in gas–liquid bubbly to churn flow regimes in large diameter pipes and their mean absolute relative deviations were obtained to be 28.1%, 54.4% and 29.6% for group 1, group 2 and all bubbles respectively.  相似文献   

19.
Information regarding the local liquid velocity in bubble columns is of great interest for research into its performance. Common optical methods fail in bubble flows that have large void fractions because of the different refraction indices of the liquid and gaseous phases. The new X-ray particle tracking velocimetry (XPTV) described here solves the problem by the use of X-rays instead of light. X-rays penetrate a gas/liquid flow in straight lines. XPTV enables us to measure the three-dimensional velocity of the liquid phase. This method was applied and validated in two bubble columns. The same method is also applicable to opaque liquids. Received: 14 August 2000/Accepted: 12 January 2001  相似文献   

20.
The study of a bubbly laminar two-phase flow in an open capillary channel under microgravity conditions was conducted aboard the sounding rocket, Texus-45. The channel consists of two parallel plates of width b = 25 mm and distance a = 10 mm. The flow along the length l = 80 mm is confined by a free surface on one side and a plate on the opposite side. The bubbles are injected at the nozzle of the capillary channel via six capillary tubes of 100 μm in inner diameter. Different liquid and gas flow rates were tested leading to different liquid free surface shape and bubble size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号