首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Spectrophotometric investigation of Cu (II), Ni(II), Co(II), and Fe(III) complexes with 2,4-dihydroxyacetophonone 2,4-dichlorobenzoylhydrazone (H2L1) and 2,4-didydroxy-5-nitroacetophenone 2,4-dichlorobenzoylhydrazone (H2L2) shows 1: 1 and 1: 2 complex formation between the pH range of 3.0 to 6.0 and also studied by jobs variation method at 0.1 M ionic strength at 30 ± 1°C specrtophotometrically. The conditional stability constants are determined for 1: 1 complexes. Effect of H2L1 and H2L2 ligand and its complexes on seed germination is studied.  相似文献   

2.
We describe the synthesis and characterization of two novel azo ligands, 4,5-dihydroxy-3,6-bis(2-hydroxyphenylazo)-2,7 naphthalene disulfonic acid (H2L) and 4,5-dihydroxy-3,6-bis(2-hydroxy-4-sulfophenylazo)-2,7-naphthalenedisulfonic acid (H2L1). The Cu(II), Ni(II), and Co(II) complexes of these ligands were prepared and characterized by infrared, UV–Vis, 1H- and 13C-NMR spectra, atomic absorption spectroscopy, mass spectrometry, elemental analyses, thermogravimetric analysis, conductivity, cyclic voltammetry, and magnetic measurements. The results suggest that the complexes have a 2:1 (metal:ligand) molar ratio, involving binuclear azo ligands with an ONO donor set. Metal ion uptake studies were conducted with a batch technique. Preliminary histological studies were also made. The results indicate that the azo ligands have high thermal stability, good metal extraction capacity, and favorable dying properties with certain tissues.  相似文献   

3.
Some new unsymmetrical tetradentate Schiff-base ligands, (N-salicylidene-N′-pyrrolidene)-1,2-ethylenediamine(H2salpyren) (H2L1), (H2Mesalpyren) (H2L2), (H2phsalpyren) (H2L3), (N-salicylidene-N′-pyrrolidene)-1,3-propylenediamine (H2salpyrpd) (H2L4), (H2Mesalpyrpd) (H2L5), (H2phsalpyrpd) (H2L6) and their Ni(II) and Cu(II) complexes were synthesized and characterized by elemental analyses, IR, UV-Vis, 1H NMR and mass spectra and magnetic moments. Possible structures of these complexes have been proposed. The thermodynamic formation constants of the complexes were determined spectrophotometrically at constant ionic strength 0.1?M (NaClO4), at 25°C in methanol.  相似文献   

4.
A series of binuclear Co(II), Ni(II) and Cu(II) complexes were synthesized by the template condensation of glyoxal, biacetyl or benzil bis-hydrazide, 2,6-diformyl-4-methylphenol and Co(II), Ni(II) or Cu(II) chloride in a 2:2:2 M ratio in ethanol. These 22-membered macrocyclic complexes were characterized by elemental analyses, magnetic, molar conductance, spectral, thermal and fluorescence studies. Elemental analyses suggest the complexes have a 2:1 stoichiometry of the type [M2LX2nH2O and [Ni2LX22H2O]·nH2O (where M = Co(II) and Cu(II); L = H2L1, H2L2 and H2L3; X = Cl; n = 2). From the spectroscopic and magnetic studies, it has been concluded that the Co(II) and Cu(II) complexes display a five coordinated square pyramidal geometry and the Ni(II) complexes have a six coordinated octahedral geometry. The Schiff bases and their metal complexes have also been screened for their antibacterial and antifungal activities by the MIC method.  相似文献   

5.
Some new unsymmetrical diimino tetradentate Schiff bases derived from 3,4-diaminobenzophenone, (N-salicyliden-N′-5- OMe.salycyliden)-3,4-diaminobenzophenone (H2sal-5-OMe.sal.dabp) (H2L1), (H2sal-5-Br.sal.dabp) (H2L2), (H2sal-5-Cl.sal.dabp) (H2L3) and (H2sal-5-NO2.sal.dabp) (H2L4) and their Ni(II) and Cu(II) complexes were synthesized and characterized by elemental analysis, IR, 1H NMR, UV-Vis spectra and mass spectra. The thermodynamic formation constants of the complexes were determined spectrophotometrically at constant ionic strength (0.1 M NaClO4) at 25 °C in DMF and their free energies of formation were calculated at 25 °C.  相似文献   

6.
The reactions of seven symmetrically alkylated tetradentate ligands 3,3′-bis(dipyrrolylmethenes) (H2L) with d-metal acetates (M(AcO)2) in DMF solutions at 298.15 K were studied by spectrophotometry. Helicands H2L were found to be structurally preorganized to form stable binuclear homoleptic two-helix helicates [M2L2] with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) acetates. The coordination of the ligands by the metal ions included consecutive stages of formation of the heteroleptic [M2L(AcO)2] and homoleptic [M2L2] complexes. The [M2L(AcO)2] complexes were spectrally revealed in solutions containing a ligand excess (c H 2 L / c M(AcO) 2 > 1). An increase in the salt concentration shifted the system of equilibria to the homoligand product [M2L2]. The thermodynamic constants of the reactions increased in the series of complexing agents: Cu(II) < Cd(II) < Hg(II) < Ni(II) < Co(II) < Zn(II). An analysis of the data on the thermodynamic constants of [M2L2] helicate formation in solutions and the earlier obtained results of the IR and 1H NMR studies of the hydrobromic salts of the ligands (H2L · 2HBr) showed that the key regularities of the influence of the structural factors on the coordination properties of the ligands were in an increase in the stability of the [M2L2] complexes with an increase in the basicity of the ligands.  相似文献   

7.
We have compared the coordination properties of decamethyl-substituted 3,3′-bis-(dipyrrolylmethenes) (H2L) with different ms-spacers separating the dipyrrolylmethene domains: methylene -CH2-, methoxyphenylmethylene -CH(p-C6H4OMe)-, and trifluoromethylmethylene -CH(CF3)-. The stable binuclear homoligand complexes [M2L2] are formed in reactions of the ligands with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) acetates. In the cases of all H2L ligands the thermodynamic constants of the complex formation reactions increase in the following series: Cu(II) < Cd(II) < Hg(II) < Ni(II) < Co(II) < Zn(II). The change in -CH2- ms-spacer to -CH(p-C6H4OMe)- or -CH(CF3)- results in a decrease in the constant of H2L complex formation by 1–4 orders of magnitude, the cation being the same. The influence of ms-substitution on the stability and luminescence properties of [M2L2] has been discussed.  相似文献   

8.
Four water soluble azo dyes, 4-(isopropyl)-2-[(E)-(4-chlorophenyl)diazenyl]phenol (L 1), 4-(isopropyl)-2-[(E)-(2,4-dichlorophenyl)diazenyl]phenol (L2), 4-(sec-butyl)-2-[(E)-(4-chlorophenyl) diazenyl]phenol (L 3), 4-(sec-butyl)-2-[(E)-(2,4-dichlorophenyl)diazenyl]phenol (L 4), and their Cu(II) and Ni(II) complexes were synthesized and characterized using spectroscopic methods. Examination of their thermal stability revealed similar decomposition temperature of approximately 260–300°C and that they were more thermally stable than their metal complexes. Ni(II) complexes of ligands L2 and L4 were more stable than the other coordination compounds. Among the synthesized ligands, L2 and the complexes Cu(L3)2 and Ni(L4)2 showed both antimicrobial and antifungal activity. However, the other ligands and the complexes were poorly active against selected microorganisms.  相似文献   

9.
Solution equilibria of the ternary systems Ni(II)–picolinic acid (Hpic) and the amino acids aspartic acid (H2asp), glutamic acid (H2glu), cysteine (H2cys) and histidine (Hhis), where the amino acids are denoted as H i L, have been studied pH-metrically. The formation constants of the resulting mixed ligand complexes have been determined at 25 °C using a ionic strength 1.0 mol·dm?3 NaCl. In the Ni(II)–Hpic–H2asp and Ni(II)–Hpic–H2glu systems, the complexes [Ni(pic)H2L]+, Ni(pic)HL, [Ni(pic)L]? and [Ni(pic)L(OH)]2? were detected. In the Ni(II)–Hpic–H2cys system the complexes [Ni(pic)H2L]+ and [Ni(pic)L]? are present. Additionally, in the Ni(II)–Hpic–Hhis system the species [Ni(Hpic)HL]2+, Ni(pic)L and [Ni(pic)L(OH)]? were identified. The species distribution diagrams as functions of pH are briefly discussed.  相似文献   

10.
4-(Chloroacetyl)diphenyl ether was synthesized from chloroacetyl chloride and diphenyl ether in the presence of AlCl3 as catalyst in a Friedel-Crafts reaction. Then, its keto oxime and dioxime derivatives were prepared. 4-phenoxy-(N-4-chlorophenylamino)phenylglyoxime (H2L) was synthesized from 4-(phenoxy)chlorophenylglyoxime and 4-chloroaniline. Ni(II), Co(II) and Cu(II) complexes of H2L were obtained. The mononuclear Ni(II), Co(II) and Cu(II) complexes of H2L have a metal–ligand ratio of 1:2 and the ligand coordinates through the two N atoms, as do most of the vic-dioximes. The structure of the ligand was identified by FT-IR, 1H NMR, 13C NMR, 13C NMR (APT) spectroscopy and elemental analysis data. The structures of the complexes were characterized on the basis of FT-IR, ICP-AES, UV-Vis, elemental analysis, magnetic susceptibility measurements, and cyclic voltammetry. The electrochemical measurements were obtained by using cyclic voltammetry in DMF solution at room temperature. The electrochemical behaviors of H2L and its complexes showed that the redox process of H2L has one irreversible oxidation wave, whereas the redox processes of the complexes have both oxidation and reduction waves with metal centered.  相似文献   

11.
New mixed-ligand complexes with empirical formulae M(4-bpy)L2·1.5H2O (M(II)=Mn, Co), Ni(4-bpy)2L2 and Cu(4-bpy) L2·H2O (where: 4-bpy=4,4'-bipyridine, L=CC L2HCOO-) have been isolated in pure state. The complexes have been characterized by elemental analysis, ir spectroscopy, conductivity (in methanol, dimethylformamide and dimethylsulfoxide solutions) and magnetic and x-ray diffraction measurements. The Mn(II) and Co(II) complexes are isostructural. The way of metal-ligand coordinations discussed. the ir spectra suggest that the carboxylate groups are bonded with metal(II) in the same way (Ni, Cu) or in different way (Mn, Co). The solubility in water is in the order of 19.40·10-3÷1.88·10-3ł mol dm-3ł. During heating the hydrate complexes lose all water in one step. The anhydrous complexes decompose to oxides via several intermediate compounds. A coupled TG-MS system was used to analyse the principal volatile products of obtained complexes. The principal volatile products of thermal decomposition of complexes in air are: H2O2 +, CO2 +, HCl+, Cl2 +, NO+ and other. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Mononuclear copper(II), cobalt(II) and nickel(II) complexes of cetirizine (CTZ = 2-[2-[4-[(4-chlorophenyl)phenyl methyl]-piperazine-1-yl]-ethoxy]acetic acid) in the presence of 2-aminomethyl-benzimidazole·2HCl (AMBI), as a representative example of heterocyclic bases, were synthesized and studied by different physical techniques. All mixed-ligand complexes have been fully characterized with the help of elemental analyses, molecular weight determinations, molar conductance, magnetic moments and spectroscopic data. The formulae of the isolated complexes are [M(AMBI)(CTZ)(NO3)(H2O)2nH2O where AMBI is the neutral bidentate 2-aminomethylbenzimidazole, CTZ the deprotonated cetirizine and n = 1 for Co(II) or 0 for Cu(II) and Ni(II) complexes. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytes. The formation equilibria of the ternary complexes have been investigated. Ternary complexes are formed by a simultaneous mechanism. Stoichiometry and stability constants for the complexes formed are reported. The concentration distribution of the complexes in solution was evaluated as a function of pH. The thermodynamic parameters were calculated from the temperature dependence of the equilibrium constants and are discussed. The synthesized metal chelates have been screened for their antimicrobial activities against the selected types of Gram-positive (G+) and Gram-negative (G?) bacteria. They were found to be more active against Gram positive than Gram negative bacteria. The antimicrobial activity in terms of metal ions obeys this order: Cu(II) > Ni(II) > Co(II).  相似文献   

13.

Abstract  

Acetone [N-(3-hydroxy-2-naphthoyl)] hydrazone (H2AHNH) has been prepared and its structure confirmed by elemental analysis and 1H NMR spectroscopy. It has been used to produce diverse complexes with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and U(VI)O2 ions. The complexes obtained have been investigated by thermal analysis, spectral studies (1H NMR, IR, UV–visible, ESR), and magnetic measurements. IR spectra suggest that H2AHNH acts as a bidentate ligand. The electronic spectra of the complexes and their magnetic moments provide information about geometries. The ESR spectra give evidence for the proposed structure and the bonding for some Cu(II) complexes. Thermal decomposition of the Ni(II) and Cu(II) complexes afforded metal oxides as final products. Kinetic data were obtained for each stage of thermal degradation of some of the complexes using the Coats–Redfern method. The formation of complexes in solution was studied pH-metrically and the order of their stability constants (log K) was found to be U(VI)O2 > Cu(II) > Zn(II) > Ni(II) > Cd(II) > Co(II). Antimicrobial and eukaryotic DNA studies were carried out.  相似文献   

14.
New Mannich bases bis(thiosemicarbazide methyl) phosphinic acid H3L1 and bis(1-phenylsemicarbazide methyl) phosphinic acid H3L2 were synthesized from condensation of phosphinic acid and formaldehyde with thiosemicarbazide and 1-phenylsemicarbazide, respectively. Monomeric complexes of these ligands, of general formula K2[CrIII(L n )Cl2], K3[FeII(L1)Cl2], K3[MnII(L2)Cl2], and K[M(L n )] (M = Co(II), Ni(II), Cu(II), Zn(II) or Cd(II); n = 1, 2) are reported. The mode of bonding and overall geometry of the complexes were determined through IR, UV-Vis, NMR, and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II), and Fe(II) complexes, square planar for Co(II), Ni(II), and Cu(II) complexes and tetrahedral for the Zn(II) and Cd(II) complexes. Complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M : L) as (1 : 1).  相似文献   

15.
Few novel mixed ligand copper(II) complexes of the type [Cu(L)(Cl)2(H2O)], [Cu(L)2]Cl2, [Cu(L)L1] and [Cu(L)(phen)H2O]Cl2 (where L is the ligand obtained from the condensation of N-(2-aminoethyl)-1,3-propanediamine with m-nitrobenzaldehyde (La)/o-chlorobenzaldehyde (Lb)/benzaldehyde (Lc)/p-methoxybenzaldehyde (Ld)/p-hydroxybenzaldehyde (Le)/furfuraldehyde (Lf)/pyrrole-2-carboxaldehyde (Lg); L1 is another ligand obtained from the condensation of anthranilic acid with salicyaldehyde; phen = 1,10-phenanthroline) have been synthesized and characterized by the spectral and analytical techniques. From these data, it is found that the ligands adopt distorted octahedral geometry on metalation with Cu(II) ion. The XRD data indicate that the complexes are polycrystalline with nanosized grains. The SEM images of [Cu(La)phen(H2O)]Cl2 and [Cu(Lf)2]Cl2 complexes show that they have leaf and cauliflower like morphology. The in vitro biological screening effects of the investigated compounds have been tested against the bacteria such as Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Pseudomonas aeruginosa and Staphylococcus aureus and fungi such as Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans by the well diffusion method. A comparative study of MIC values of the Schiff base ligands and their complexes indicates that the complexes exhibit higher antimicrobial activity than the free ligands. An electrochemical study of the copper complexes containing electron withdrawing substituted ligands reveals that they prefer to bind to DNA in Cu(II) rather than Cu(I) oxidation state.  相似文献   

16.
《Polyhedron》1999,18(26):3383-3390
Nickel(II) complexes of 1,6-bis(pyridyl)-2,5-dithiahexane (L1), 1,7-bis(2′-pyridyl)-2,6-dithiaheptane (L2) and 1,9-bis(2′-pyridyl)-2,5,8-trithianonane (L3) have been prepared and their spectroscopic and redox behaviors were studied. [Ni(II)L1(H2O)2](ClO4)2, and [Ni(II)L3(H2O)](ClO4)2 were crystallized in single crystal form; their structures were solved by X-ray crystallography. The structures of the complexes are of distorted octahedral geometry. A red shift in the electronic spectra and a positive potential shift in electrochemical studies were detected during the addition of the sodium salt of 2-mercaptoethanesulfonic acid (CoM) to Ni(II) complexes containing L1 and L2. The high redox potential shifting difference (PSD) was observed with the addition of CoM to [NiL1]2+, which accounts for the axial coordination of CoM with the nickel ion. However, [Ni(II)L3]2+ does not respond well with CoM addition due to the structural limitation around the Ni(II) ion. A destabilization of [Ni(II)L1]2+ and [Ni(II)L2]2+ complexes and stabilization for [Ni(II)L3]2+ were noticed in their redox studies and these trends were inversely changed during anaerobic CoM addition to Ni(II) complexes. A nephelauxetic effect (β values) has been shown to establish a good relation with PSD.  相似文献   

17.
Cobalt(II), nickel(II), and copper(II) complexes containing 5,12-di(4-bromophenyl)-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L1) and 5,12-diphenyl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L2) have been synthesized. All complexes were characterized by elemental analysis, MALDI TOF-MS spectrometry, and electronic absorption spectroscopy. The crystal structures of two compounds, [Cu2(H2L1)Cl4]n and [NiL2], were determined by X-ray powder diffraction. In the polymeric [Cu2(H2L1)Cl4]n, the Cu2Cl4 units and H2L1 molecules are situated on inversion centers. Each Cu(II) has a distorted trigonal-bipyramidal coordination environment formed by N and O from H2L1 [Cu–N 2.340(14)?Å, Cu–O 1.952(11)?Å], two bridging chlorides [Cu–Cl 2.332(5), 2.279(5)?Å] and one terminal chloride [Cu–Cl 2.320(6)?Å]. In the [NiL2] complex, the Ni(II) situated on inversion center has a distorted square-planar coordination environment formed by four nitrogens from L2 [Ni–N 1.860(11), 1.900(11)?Å].  相似文献   

18.
The Ni(II) and Cu(II) complexes of four azo compounds (H2L1–4), namely, 2-(p-X-phenylazo)-4-acetamidophenol (X = OCH3, NO2, Br, and H for H2L1, H2L2, H2L3, and H2L4, respectively) were prepared and characterized on the basis of their analytical, spectroscopic, magnetic, and conductance data. The isolated complexes are found to have the general formulae [M(HL1–4)Cl(H2O)3] (M = Ni(II) and Cu(II)). The chelates are found to have octahedral structure. The infrared spectra show that H2L1–4 ligands are coordinated to the metal ions in a uninegative bidentate manner, with NO donor sites of the azo N and the deprotonated phenolic O. The ligands and their chelates are subjected to thermal analysis. The biological activity of the synthesized ligands and their metal complexes also are screened against the adult Tribolium confusum mortality. They showed remarkable biological activity.  相似文献   

19.
Study of the sulphosalicylate complexes of copper(II), nickel(II), cobalt(II) and uranyl(II) by means of cation-exchange resins.The conditional stability constants of the 1:1 complexes of the sulphosalicylate ions (L3-) with copper(II), nickel(II), cobalt(II) and uranyl ions have been determined in a sodium perchlorate solution (0.1 M) and at various pH values by a cation-exchange method based on Schubert's procedure. The limits of application of the method are discussed. The variation with pH of the conditional stability constants can be explained by the existence of the complexes: CuH2L, CuHL, CuL-; NiH2L+, NiHL, NiL-; CoHL, CoL-; UO2H2L+, UO2HL, UO2L-, UO2LOH2-. The stability constants of these complexes are reported. Distribution diagrams of the various complexes of each element with pH and total concentration of sulphosalicylate parameters are given.  相似文献   

20.
Benzoxazolyl-, benzthiazolyl-, 2′-quinolinyl- and 1′-phthalazinylhydrazones of glyoxylic acid (H2L) and their complexes have been synthesized. The acid-base properties of the obtained hydrazones were studied by the methods of potentiometric titration and spectrophotometry. The hydrazones were shown to form mononuclear octahedral complexes M(HL)2 with Ni(II) and Mn(II) acetates, whereas with Zn(II) and Cu(II) acetates binuclear complexes M2L2 were formed. The nature of the exchange interaction between the Cu(II) ions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号