首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In this study, substituted 2H-indazolo[2,1-b]phthalazine-1,6,11-trione compounds ( 4a–d ) obtained via one-pot three-component condensation reaction of aromatic aldehydes, cyclic 1,3-dione, and phthalhydrazide in ethanol catalyzed by Y(OTf)3 showed satisfactory inhibitory effects against some important enzymes. Also, these molecules had Ki values in the row of 185.92 ± 36.03-294.82 ± 50.76 nM vs carbonic anhydrase I (CA I), 204.93 ± 46.90-374.10 ± 83.63 nM against human CA II, 937.16 ± 205.82-1021.83 ± 193.66 nM against α-glycosidase (α-Gly), respectively. For cholinesterase enzymes, the Ki values were found in the range of 47.26 ± 9.62-72.05 ± 19.47 nM against acetylcholinesterase (AChE) and 65.03 ± 9.88-102.83 ± 25.04 nM against butyrylcholinesterase (BChE), respectively. The inhibition effects of these compounds against enzymes whose name are AChE, BChE, α-Gly, hCA I, and hCA II, were compared with control molecules like tacrine, acarbose, and acetazolamide.  相似文献   

2.
2-(3-[4-Methoxyphenyl]-5-aryl-4,5-dihydro-1H-pyrazol-1-yl)benzo[d]thiazoles ( 1b-7b ) were synthesized for the first time except 1b , and spectral methods such as 1H NMR, 13C NMR and HRMS were utilized to illuminate the chemical structures of the synthesized compounds. Phenyl ( 1b ), 2-methoxyphenyl ( 2b ), 4-methoxyphenyl ( 3b ), 4-methoxy-3-hydroxyphenyl ( 4b ), 2,5-dimethoxyphenyl ( 5b ), 3,4,5-trimethoxyphenyl ( 6b ), or thiophene-2-yl ( 7b ) was used as a aryl part. The inhibitory effects of the compounds were evaluated toward human carbonic anhydrase I and II enzymes (hCA I and hCA II). In vitro cytotoxic effects of the compounds against human oral squamous carcinomas and human normal oral cells were carried out via MTT. The compounds ( 1b-7b ) had Ki values of 36.87 ± 11.62-66.24 ± 2.99 μM (hCA I) and 22.66 ± 1.41-89.95 ± 6.25 μM (hCA II). Compounds 1b (Ki = 36.87 ± 11.62 μM) toward hCA I, 6b (Ki = 22.66 ± 1.41 μM) toward hCA II had significant enzyme inhibitory potency. Compound 6b had the highest tumor selectivity (TS = 29.3) and potency selectivity expression (PSE = 272.3) values. Therefore, compounds 1b and 6b with CAs inhibition effect and compound 6b with the cytotoxicity may be forwarded to further studies as potent compounds.  相似文献   

3.
The synthesis of triazinthions and their reactions with some nucleophilic reagents have been investigated during this scientific study. Thus, thiourea with a single component has been synthesized as a result of concomitant reactions of aldehyde and amines trials. The structure of the synthesized compounds was confirmed by 1H, 13C NMR spectroscopy methods. The inhibitory effects of novel N-substituted triazinane-2-thione derivatives on acetylcholinesterase (AChE) activity were performed according to the spectrophotometric method of Ellman et al. These novel N-substituted triazinane-2-thiones derivatives were effective inhibitors of the α-glycosidase, cytosolic carbonic anhydrase I and II isoforms (hCA I and II), and Acetylcholinesterase (AChE) enzymes with Ki values in the range of 1.01 ± 0.28 to 2.12 ± 0.37 nm for α-glycosidase, 13.44 ± 4.39 to 74.98 ± 6.25 nm for hCA I, 10.41 ± 4.8 to 72.6 ± 17.66 nm for hCA II, 36.82 ± 9.95 to 108.48 ± 1.17 nm for AChE, and 624.62 ± 100.34 to 1124.16 ± 205.14 nm for α-glycosidase, respectively.  相似文献   

4.
Novel 4,5-dihydropyrazole derivatives (3a–i), 3-(4-((3aR,4S,7R,7aS)-1,3-dioxo-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindol-2(3H)-yl)phenyl)-5-phenyl-4,5-dihydro-1H-pyrazole-1-carbothio amide, were obtained by the addition of thiosemicarbazide (2) to the chalcones (1a–i). The addition–cyclization of 2,4′-dibromoacetophenone (4) to pyrazole derivatives (3a–i) gave the new pyrazolyl-thiazole derivatives (5a–i), (3aR,4S,7R,7aS)-2-(4-(1-(4-(4-bromophenyl)thiazol-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-3-yl)phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione. Antibacterial and acetylcholinesterase (AChE) enzyme and human carbonic anhydrase (hCA) I, and II isoform inhibitory activities of the compounds 3a–i and 5a–i were investigated. Some of the compounds showed promising antibacterial activity. In addition, the hCA II and I were effectively inhibited by the lately synthesized derivatives, with Ki values in the range of 18.90?±?2.37 ?58.25?±?13.62?nM for hCA II and 5.72?±?0.98 ?37.67?±?5.54?nM for hCA I. Also, the Ki parameters of these compounds for AChE were obtained in the range of 25.47?±?11.11???255.74?±?82.20?nM. Also, acetazolamide, clinical molecule, was used as a CA standard inhibitor that showed Ki value of 70.55?±?12.30?nM against hCA II, and 67.17?±?9.1?nM against hCA I, and tacrine inhibited AChE showed Ki value of 263.67?±?91.95.  相似文献   

5.
A series of novel urea, sulfamide and N,N-dipropargyl substituted benzylamines were synthesized from dihydrochalcones. The synthesized compounds were evaluated for their cholinesterases and carbonic anhydrase inhibitory actions. The known dihydrochalcones were converted into four new benzylamines via reductive amination. N,N-Dipropargylamines, ureas and sulfamides were synthesized following the reactions of benzylamines with propargyl bromide, N,N-dimethyl sulfamoyl chloride and N,N-dimethyl carbamoyl chloride. The novel substituted benzylamines derived from dihydrochalcones were evaluated against some enzymes such as human erythrocyte carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The novel substituted benzylamines derived from dihydrochalcones exhibited Ki values in the range of 0.121–1.007 nM on hCA I, and 0.077–0.487 nM on hCA II closely related to several pathological processes. On the other hand, Ki values were found in the range of 0.112–0.558 nM on AChE, 0.061–0.388 nM on BChE. As a result, novel substituted benzylamines derived from dihydrochalcones showed potent inhibitory profiles against indicated metabolic enzymes. In addition, Induced-Fit Docking (IFD) simulations and ADME prediction studies have also been carried out to elucidate the inhibition mechanisms and drug-likeness of the synthesized compounds. Therefore, these results can make significant contributions to the treatment of some global diseases, especially Alzheimer's diseases and glaucoma, and the development of new drugs.  相似文献   

6.
A novel Ni(II) complex containing 2-fluorobenzoate and 3-hydroxypyridine ligands was synthesized and characterized using elemental analysis, Fourier transform infrared (FT-IR) spectroscopy and single-crystal X-ray diffraction. FT-IR peaks show that the carboxylate group from 2-fluorobenzoate has a monodentate coordination mode. The coordination environment around the Ni2+ ion is of distorted octahedral geometry. The octahedral geometry consists of a total of four oxygen atoms from two carboxylate groups of two fluorobenzoate anions, two water molecules and two nitrogen atoms from two 3-hydroxypyridine ligands. The complex shows excellent inhibitory effects against some metabolic enzymes. Ki values for the complex were found as 108.17 ± 25.63, 124.88 ± 36.20, 28.11 ± 2.87, 20.95 ± 5.65 and 32.63 ± 9.67 μM against human carbonic anhydrase I, human carbonic anhydrase II, α-glycosidase, acetylcholinesterase and butyrylcholinesterase, respectively. In addition, geometry optimization and vibration frequencies were calculated, and single point energy was studied based on optimization. Experimental and theoretical data were compared. The B3LYP/6-31G(d,p) basis set was used for all calculations.  相似文献   

7.
The alkyl and aryl derivatives of aniline are important starting materials in fine organic synthesis. Allyl bromide and benzyl chloride were taken as substrates for the alkylation reaction and as a halide ion scavenger. Triethylamine was utilized at reflux condition of N,N-dimethylacetamide (DMA). Novel synthesized N-benzyl and N-allyl aniline derivatives (1a-f) were evaluated to be highly potent inhibitors for acetylcholinesterase (AChE) and carbonic anhydrases (hCAs). The half maximal inhibitory concentration (IC50) of N-benzyl- and N-allyl aniline derivatives were calculated between 243.11 and 633.54 nM for hCA I, 296.32–518.37 nM for hCA II and 182.45–520.21 nM for AChE enzymes. On the other hand, Ki values are in the range of 149.24 ± 15.59 to 519.59 ± 102.27 nM for AChE, 202.12 ± 16.21 to 635.31 ± 45.33 nM for hCA I and 298.57 ± 94.13 to 511.18 ± 115.98 nM for hCA II isoenzyme. Additionally, in silico molecular docking computations were performed with Autodock Vina program to support the experimental in vitro studies for both hCAs and AChE inhibitors. The in silico molecular docking results demonstrated that the scores are in good agreement with the experimental results.  相似文献   

8.
In this study, a new series of Mannich bases, 3-(aminomethyl)-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}-2( 3H )-benzoxazolones ( 1a–g ), were synthesized by the Mannich reaction. Inhibitory effects of the newly synthesized compounds towards carbonic anhydrases (CAs) and acetylcholinesterase (AChE) enzymes were evaluated to find out new potential drug candidate compounds. According to the inhibitory activity results, Ki values of the compounds 1 and 1a–g were in the range of 12.3 ± 1.2 to 154.0 ± 9.3 nM against hCA I, and they were in the range of 8.6 ± 1.9 to 41.0 ± 5.5 nM against hCA II. Ki values of acetazolamide (AZA) that was used as a reference compound were 84.4 ± 8.4 nM towards hCA I and 59.2 ± 4.8 nM towards hCA II. Ki values of the compounds 1 and 1a–g were in the range of 35.2 ± 2.0 to 158.9 ± 33.5 nM towards AChE. Ki value of Tacrine (TAC), the reference compound, was 68.6 ± 3.8 nM towards AChE. Furthermore, docking studies were done with the most potent compounds 1d , 1g , and 1f (in terms of hCA I, hCA II, and AChE inhibition effects, respectively) to determine the binding profiles of the series with these enzymes. Additionally, the prediction of ADME profiles of the compounds pointed out that the newly synthesized compounds had desirable physicochemical properties as lead compounds for further studies.  相似文献   

9.
2-Hydroxy salicylhydrazide isatin hydrazone (L) and its Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes were synthesized. 1H NMR, UV–Vis, IR spectroscopy and elemental (CHN/S) analysis techniques were applied for characterization. TG/DTA techniques revealed that all the synthetic compounds are thermally stable up to 300 °C. They were found non-electrolytes in nature. Furthermore, all these complexes were evaluated for antiglycation and DPPH radical scavenging activities. They showed varying degree of activity with IC50 values between 168.23 and 269.0 μM in antiglycation and 29.63–57.71 μM in DPPH radical scavenging activity. Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes showed good antiglycation as well as DPPH radical scavenging activity. The IC50 values for antiglycation activity are 168.23 ± 2.37, 234.27 ± 4.33, 257.1 ± 6.43, 267.7 ± 8.43, 269.0 ± 8.56 Ni for Co, Zn, Mn, Cu, and Ni complexes, respectively, while IC50 value were found to be 29.63 ± 2.76, 31.13 ± 1.41, 35.16 ± 2.45, 43.53 ± 3.12, 57.71 ± 2.61 μM for Cu, Zn, Mn, Co and Ni complexes, respectively, for DPPH radical scavenging activity. These synthesized metal complexes were found to be better active than standards Rutin (IC50 = 294.46 μM) for anti-glycation, and tert-butyl-4-hydroxyanisole (IC50 = 44.7 μM) for DPPH radical scavenging activity.  相似文献   

10.
Multifunctional silica nanoparticles decorated with fluorescent and sulfonamide carbonic anhydrase (CA) inhibitors were prepared and investigated as multivalent enzyme inhibitors against the cytosolic isoforms hCA I and II and the transmembrane tumor‐associated ones hCA IX and XII. Excellent inhibitory effects were observed with these nanoparticles, with KI values in the low nanomolar range (6.2–0.67 nM ) against all tested isozymes. A significant multivalency effect was seen for the inhibition of the monomeric enzymes hCA I and II compared to the dimeric hCA IX and hCA XII isoforms, where no multivalent effect was observed, suggesting that the multivalent binding is occurring through enzyme clustering.  相似文献   

11.
Carbonic anhydrase (CA II) inhibitors are very important therapeutic targets in drug design for treatment of neuropathic pain and in eradication of glaucoma, cancer, epilepsy, ulcer and obesity. In this study, some two2-substituted benzoxazoles ( 3a-j ) were developed as a new family of carbonic anhydrase II inhibitors by employing acyl thiourea chemistry via a simple and expedient protocol and evaluated for CA II inhibitor activity and radical scavenging ability. Compounds 3f and 3j were found to be the most potent inhibitors, with IC50 values of 0.00564 and 0.00596 μM, respectively which are several times better than that of the standard, acetazolamide (IC50 value 0.997 ± 0.0586 μM). Docking experiments were carried out against the carbonic anhydrase II crystal structure to better rationalize the inhibitory activities of these new structures. Moreover, the results of a DPPH radical scavenging assay showed that the antioxidant profile of compound 3i is superior to those of other derivatives. The results have revealed that derivatives 3f and 3j behave as CA-II inhibitors significantly better than standard and 3i has good anti-oxidation potential.  相似文献   

12.
In this work, peripheral or nonperipheral tetra‐[4‐(9H‐carbazol‐9‐yl)phenoxy] substituted cobalt(II), manganese (III) phthalocyanines were synthesized for the first time. Their acetylcholinesterase from Electrophorus electricus (AChE), butyrylcholinesterase equine serum (BuChE), and α‐glucosidase Saccharomyces cerevisiae inhibition were investigated spectrophotometrically. Finally, in vitro cytotoxicities of the compounds were investigated on human neuroblastoma (SH‐SY5Y) cell line using MTT cell viability assay. The compounds inhibited to enzymes in the range of 7.39 ± 0.25–35.29 ± 2.49 μM with IC50 values for AChE and 14.38 ± 0.66–58.02 ± 4.94 μM for BuChE as compared with galantamine, which used as a positive control. For α‐glucosidase, all compounds had stronger inhibition action than acarbose according to the IC50 values. The IC50 values of N? Co and N? Mn were found to be 3.05 ± 0.10 and 15.82 ± 1.85 μM, respectively. The results of cytotoxicity showed that the IC50 values were above 100 μM showing the compounds had low cytotoxic action against SH‐SY5Y cell line for 24 h. Overall, carbazole substituted nonperipheral compounds can be considered as a potential agent for the treatment of Alzheimer's diseases and diabetes mellitus.  相似文献   

13.
The investigation of carbonic anhydrase and paraoxonase enzyme inhibition properties of water-soluble zinc and gallium phthalocyanine complexes ( 1 and 2 ) are reported for the first time. The binding of p-sulfonylphenoxy moieties to the phthalocyanine structure favors excellent solubilities in water, as well as providing an inhibition effect on carbonic anhydrase (CA) I and II isoenzymes and paraoxonase (PON1) enzyme. According to biological activity results, both complexes inhibited hCA I, hCA II, and PON1. Whereas 1 and 2 showed moderate hCA I and hCA II (off-target cytosolic isoforms) inhibitory activity (Ki values of 26.09 µM and 43.11 µM for hCA I and 30.95 µM and 33.19 µM for hCA II, respectively), they exhibited strong PON1 (associated with high-density lipoprotein [HDL]) inhibitory activity (Ki values of 0.37 µM and 0.27 µM, respectively). The inhibition kinetics were analyzed by Lineweaver–Burk double reciprocal plots. It revealed that 1 and 2 were noncompetitive inhibitors against PON1, hCA I, and hCA II. These complexes can be more advantageous than other synthetic CA and PON inhibitors due to their water solubility. Docking studies were carried out to examine the interactions between hCA I, hCA II, and PON1 inhibitors and metal complexes at a molecular level and to predict binding energies.  相似文献   

14.
N‐Heterocyclic carbene (NHC) complexes bromo(1,3‐dibenzyl‐1,3‐dihydro‐2H‐imidazol‐2‐ylidene)silver(I) ( 2a ), bromo[1‐(4‐cyanobenzyl)‐3‐methyl‐1,3‐dihydro‐2H‐imidazol‐2‐ylidene]silver(I) ( 2b ), and bromo[1‐(4‐cyanobenzyl)‐3‐methyl‐1,3‐dihydro‐2H‐benzimidazol‐2‐ylidene]silver(I) ( 2c ) were prepared by the reaction of 1,3‐dibenzyl‐1H‐imidazol‐3‐ium bromide ( 1a ), 3‐(4‐cyanobenzyl)‐1‐methyl‐1H‐imidazol‐3‐ium bromide ( 1b ), and 3‐(4‐cyanobenzyl)‐1‐methyl‐1H‐benzimidazol‐3‐ium bromide ( 1c ), respectively, with silver(I) oxide. NHC Complexes chloro(1,3‐dibenzyl‐1,3‐dihydro‐2H‐imidazol‐2‐ylidene)gold(I) ( 3a ), chloro[1‐(4‐cyanobenzyl)‐3‐methyl‐1,3‐dihydro‐2H‐imidazol‐2‐ylidene]gold(I) ( 3b ), and chloro[1‐(4‐cyanobenzyl)‐3‐methyl‐1,3‐dihydro‐2H‐benzimidazol‐2‐ylidene]gold(I) ( 3c ) were prepared via transmetallation of corresponding (bromo)(NHC)silver(I) complexes with chloro(dimethylsulfido)gold(I). The complex 3a was characterized in two polymorphic forms by single‐crystal X‐ray diffraction showing two rotamers in the solid state. The cytotoxicities of all three bromo(NHC)silver(I) complexes and three (chloro)(NHC)gold(I) complexes were investigated through 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bormide (MTT)‐based preliminary in vitro testing on the Caki‐1 cell line in order to determine their IC50 values. (Bromo)(NHC)silver(I) complexes 2a – 2c and (chloro)(NHC)gold(I) complexes 3a – 3c were found to have IC50 values of 27±2, 28±2, 34±6, 10±1, 12±5, and 12±3 μM , respectively, on the Caki‐1 cell line.  相似文献   

15.
The discovery of enzyme targeting inhibitors is a popular area of drug research. Biological activities of the compounds bearing phenol and heteroaryl groups make them popular groups in drug design targeting important enzymes such as acetylcholinesterase (AChE, E.C.3.1.1.7) and carbonic anhydrases (CAs, EC 4.2.1.1). 1-(4-hydroxyphenyl)- 2-((aryl)thio)ethanones as possible AChE and CAs inhibitors were synthesized, and their chemical structures were confirmed by IR, 1H NMR, 13C NMR, and HRMS. The compounds 2 and 4 were found potent AChE inhibitors with the Ki values of 22.13 ±1.96 nM and 23.71 ±2.95 nM, respectively, while the compounds 2 (Ki = 8.61 ±0.90 nM, on hCA I) and 1 (Ki = 8.76 ±0.84 nM, on hCA II) had considerable CAs inhibitory potency. The lead compounds may help the scientists for the rational designing of an innovative class of drug candidates targeting enzyme-based diseases.  相似文献   

16.
In this study, 4‐{2‐(2‐thienyl)ethoxy}phthalonitrile ( 3 ) and its tetra substituted peripherally metal‐free ( 4 ), lead (II) ( 5 ), magnesium (II) ( 6 ), and cobalt (II) ( 7 ) phthalocyanines were synthesized. The structural characterization of the obtained compounds was performed by a combination of FTIR, 1H‐NMR, UV–vis, and MALDI‐TOF techniques. The inhibitory properties of these compounds were determined using Ingkaninan's methods against cholinesterase enzymes. Compound ( 7 ) had the highest enzyme inhibitory effect toward AChE and BuChE enzymes with IC50 values of 23.71 ± 0.39 and 27.29 ± 0.22 μM, respectively. The enzyme kinetic study of compound ( 7 ) demonstrated noncompetitive AChE inhibition and uncompetitive BuChE inhibition. The Ki values of compound ( 7 ) against AChE and BuChE were found to 39.15 and 7.25 μM, respectively. In the tested compounds, ( 7 ) deserves further investigation for potential therapeutic candidates of Alzheimer's disease.  相似文献   

17.
A series of symmetrically n ‐alkyl‐substituted mono benzimidazolium salts with steady increase in n ‐alkyl chain length have been prepared by stepwise N ‐alkylation resulting in salts ( 1 – 8 ). The mono N‐heterocyclic carbene (NHC)–Ag(I) complexes ( 9 – 16 ) derived from the respective salts were readily accessible by in situ deprotonation using Ag2O. All the salts and the complexes were characterized using Fourier transform infrared, 1H NMR, 13C NMR and elemental analyses. Furthermore, the structures of salts 3 and 7 and complex 16 were elucidated using X‐ray crystallography, which established that this mono NHC–Ag(I) complex has a linear bis‐carbene arrangement (C2–Ag). The proligands and the respective Ag(I) complexes were studied for their in vitro anticancer potential against human colon cancer cell line (HCT‐116) using 5‐fluorouracil as a standard. From the IC50 values of all the tested compounds, it can be postulated that there is an influential relationship between the increase in chain length of the wingtip n ‐alkyl groups and the anticancer potential. The proligands 4 – 8 and their respective complexes 12 – 16 with long n ‐alkyl chain lengths (n  = 6–10) showed better IC50 values (0.3–3.9 μM) than the standard drug with the complexes displaying markedly better antiproliferation activity against HCT‐116 cell line than the respective proligands and the standard drug (IC50 = 10.2 μM).  相似文献   

18.
A new ligand, 2‐aminonicotinaldehyde N‐methyl thiosemicarbazone (ANMTSC) and its metal complexes [Co(II) ( 1 ); Ni(II) ( 2 ); Cu(II) ( 3 ); Zn(II) ( 4 ); Cd(II) ( 5 ) or Hg(II) ( 6 )] were synthesized. The compounds were characterized by analytical methods and various spectroscopic (infrared, magnetic, thermal, 1H, 13C NMR, electronic and ESR) tools. The structure of ANMTSC ligand was confirmed by single crystal X‐ray diffraction study. The spectral data of metal complexes indicate that the ligand acts as mononegative, bidentate coordination through imine nitrogen (N) and thiocarbonyl sulphur (S?) atoms. The proposed geometries for complexes were octahedral ( 1 – 2 ), distorted octahedral ( 3 ) and tetrahedral ( 4 – 6 ). Computational details of theoretical calculations (DFT) of complexes have been discussed. The compounds were subjected to antimicrobial, antioxidant, antidiabetic, anticancer, ROS, studies and EGFR targeting molecular docking analysis. Complex 5 has shown excellent antibacterial activity and the complexes 2 and 5 have shown good antifungal activity. The complexes 1 and 4 displayed good antioxidant property with IC50 values of 11.17 ± 1.92 μM and 10.79 ± 1.85 μM, respectively compared to standard. In addition, in vitro anticancer activity of the compounds was investigated against HeLa, MCF‐7, A549, IMR‐32 and HEK 293 cell lines. Among all the compounds, complex 4 was more effective against HeLa (IC50 = 10.28 ± 0.69 μM), MCF‐7 (IC50 = 9.80 ± 0.83 μM), A549 (IC50 = 11.08 ± 0.57 μM) and IMR‐32 (10.41 ± 0.60 μM) exhibited superior anticancer activity [IC50 = 9.80 ± 0.83 ( 4 ) and 9.91 ± 0.37 μM ( 1 )] against MCF‐7 compared with other complexes.  相似文献   

19.
Ethane sulfonic acide hydrazide (esh: CH3CH2SO2NHNH2) derivatives as 5-methylsalicyl-aldehydeethanesulfonylhydrazone (5msalesh), 5-methyl-2-hydroxyacetophenoneethane sulfonylhydrazone (5mafesh) and their Ni(II), Co(II) complexes have been synthesized for the first time. The structure of these compounds has been investigated by elemental analysis, FT-IR, 1H NMR, 13C NMR, LC/MS, UV–vis spectrophotometric method, magnetic susceptibility, thermal studies and conductivity measurements. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and Gram negative bacteria; Salmonella enteritidis, Escherichia coli by using the microdilution broth method. The biological activity screening showed that ligands have more activity than complexes against the tested bacteria. The inhibition activities of these compounds on carbonic anhydrase II (CA II) have been investigated by comparing IC50 and Ki values and it has been found that 5msalesh and its complexes have more enzyme inhibition efficiency than other compounds.  相似文献   

20.
Platinum (II) complexes bearing N‐heterocyclic carbene (NHC) ligands have been widely used in catalytic chemistry, but there are very few reports of biological properties of this type of complexes. A series of [PtCl2(NHC)(PEt3)] complexes were synthesized. The structures of all compounds were characterized by 1H‐NMR, 13C‐NMR, IR and elemental analysis techniques, which supported the proposed structures. The single crystal structures of complexes 1a and 1e were determined. The title complexes show slightly distorted square‐planar coordination around the platinum (II) metal center. The cytotoxic properties of the platinum (II)–NHC complexes have been assessed in various human cancer lines, including cisplatin‐sensitive and resistant cells. IC50 values of these four complexes were determined by the MTS‐based assay on three human cell lines—brain (SHSY5Y), colon (HTC116) and liver (HEP3B). These complexes have been highlighted cancer therapeutic agent with unique structures and functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号