首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of nonlinear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density(PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.  相似文献   

2.
Due to uncertain push-pull action across boundaries between different attractive domains by random excitations,attractors of a dynamical system will drift in the phase space,which readily leads to colliding and mixing with each other,so it is very difficult to identify irregular signals evolving from arbitrary initial states.Here,periodic attractors from the simple cell mapping method are further iterated by a specific Poincare’ map in order to observe more elaborate structures and drifts as well as possible dynamical bifurcations.The panorama of a chaotic attractor can also be displayed to a great extent by this newly developed procedure.From the positions and the variations of attractors in the phase space,the action mechanism of bounded noise excitation is studied in detail.Several numerical examples are employed to illustrate the present procedure.It is seen that the dynamical identification and the bifurcation analysis can be effectively performed by this procedure.  相似文献   

3.
Based on the piston theory of supersonic flow and the energy method, a two dimensional wing with a control surface in supersonic flow is theoretically modeled, in which the cubic stiffness in the torsional direction of the control surface is considered. An approximate method of the cha- otic response analysis of the nonlinear aeroelastic system is studied, the main idea of which is that under the condi- tion of stable limit cycle flutter of the aeroelastic system, the vibrations in the plunging and pitching of the wing can approximately be considered to be simple harmonic excita- tion to the control surface. The motion of the control surface can approximately be modeled by a nonlinear oscillation of one-degree-of-freedom. The range of the chaotic response of the aeroelastic system is approximately determined by means of the chaotic response of the nonlinear oscillator. The rich dynamic behaviors of the control surface are represented as bifurcation diagrams, phase-plane portraits and PS diagrams. The theoretical analysis is verified by the numerical results.  相似文献   

4.
It was theoretically proved that one-dimensional transiently chaotic neural networks have chaotic structure in sense of Li-Yorke theorem with some given assumptions using that no division implies chaos. In particular, it is further derived sufficient conditions for the existence of chaos in sense of Li- Yorke theorem in chaotic neural network, which leads to the fact that Aihara has demonstrated by numerical method. Finally, an example and numerical simulation are shown to illustrate and reinforce the previous theory.  相似文献   

5.
Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method.The rectangular thin plate is subject to transversal and in-plane excitation.A two-degree-of-freedom nonlinear nonautonomous system governing equations of motion for the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach.A one-toone internal resonance is considered.An averaged equation is obtained with a multi-scale method.After transforming the averaged equation into a standard form,the extended Melnikov method is used to show the existence of multi-pulse chaotic dynamics,which can be used to explain the mechanism of modal interactions of thin plates.A method for calculating the Melnikov function is given without an explicit analytical expression of homoclinic orbits.Furthermore,restrictions on the damping,excitation,and detuning parameters are obtained,under which the multi-pulse chaotic dynamics is expected.The results of numerical simulations are also given to indicate the existence of small amplitude multi-pulse chaotic responses for the rectangular thin plate.  相似文献   

6.
Based on the motion differential equations of vibration and acoustic coupling system for thin elastic spherical shell with an elastic plate attached to its internal surface, in which Dirac-δ functions are employed to introduce the moments and forces applied by the attachment on the surface of shell, by means of expanding field quantities as Legendre series, a semi-analytic solution is derived for the vibration and acoustic radiation from a submerged stiffened spherical shell with a deck-type internal plate, which has a satisfactory computational effectiveness and precision for an arbitrary frequency range. It is easy to analyze the effect of the internal plate on the acoustic radiation field by using the formulas obtained by the method proposed. It is concluded that the internal plate can significantly change the mechanical and acoustic characteristics of shell, and give the coupling system a very rich resonance frequency spectrum. Moreover, the method can be used to study the acoustic radiation mechanism in similar structures as the one studied here.  相似文献   

7.
The paper not only studies the noise reduction methods of chaotic time series with noise and its reconstruction techniques,but also discusses prediction techniques of chaotic time series and its applications based on chaotic data noise reduction.In the paper,we first decompose the phase space of chaotic time series to range space and null noise space.Secondly we restructure original chaotic time series in range space.Lastly on the basis of the above,we establish order of the nonlinear model and make use of the nonlinear model to predict some research.The result indicates that the nonlinear model has very strong ability of approximation function,and Chaos predict method has certain tutorial significance to the practical problems.  相似文献   

8.
The step reduction method was first suggested by Prof. Yeh Kai-yuan. This method has more advantages than other numerical methods. By this method, the analytic expression of solution can he obtained for solving nonuniform elastic mechanics. At the same time. its ealculuting time is very short and convergent speed very fast. In this paper, the convergent condition and nited formula of step reduction method are given by mathemutical method. It is proved that the solution of displacement and stress resultants obtained by this method can eonverge to exact solution uniformly, when the convergent condition is sutisfied. By united formula, the analytic solution solution can be expressed as matrix form, and therefore the former complicated expression can be avoMed. Two numerical examples are given at the end of this paper which indicate that. by the theory in this paper, a right model can be obtained for step reduction method.  相似文献   

9.
In the present paper a finite layer method is studied for the elastodynamics of transverse isotropic bodies. With this method, semi-infinite soils can be considered as an transverse isotropic half-space, its material functions varying with depth. Dividing the half.space into a series of layers in the direction of depth the material fimetioms in each layer are simulated by exponential fumctions Consequently, the fundamental equations to be solved can be simplified if the fouricr transform with repsect to coordinates is used. We have obtained the relationship between the "layer forces" and "layer displacements". This finite layer method, in fact, can also be called a semi-analytical method. It possesses those advantages as the usual semi-analytical methods do, and can be used to analyse the problem of the interaction between soils and structures.  相似文献   

10.
Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition.  相似文献   

11.
IntroductionLotsoftimeseriesfrompracticalproblemsbelongtononlinearchaotictimeseries.Ithasbeenprovedinpracticethatthelinearmodelsofeitherlowordersorhighorderscannotbeusedtodescribenonlinearchaotictimeseries.Henceitisveryimportanttoinvestigatechaotictim…  相似文献   

12.
The prediction methods and its applications of the nonlinear dynamic systems determined from chaotic time series of low-dimension are discussed mainly. Based on the work of the foreign researchers, the chaotic time series in the phase space adopting one kind of nonlinear chaotic model were reconstructed. At first, the model parameters were estimated by using the improved least square method. Then as the precision was satisfied, the optimization method was used to estimate these parameters. At the end by using the obtained chaotic model, the future data of the chaotic time series in the phase space was predicted. Some representative experimental examples were analyzed to testify the models and the algorithms developed in this paper. The results show that if the algorithms developed here are adopted, the parameters of the corresponding chaotic model will be easily calculated well and true. Predictions of chaotic series in phase space make the traditional methods change from outer iteration to interpolations. And if the optimal model rank is chosen, the prediction precision will increase notably. Long term superior predictability of nonlinear chaotic models is proved to be irrational and unreasonable. Paper from Chen Yu-shu, Member of Editorial of Committee, AMM Foundation item: the National Natural Science Foundation of China (19990510); the National Key Basic Research Special Fund(G1998020316) Biography: Ma Jun-hai(1965-), Professor, Doctor  相似文献   

13.
Volterra series is a powerful mathematical tool for nonlinear system analysis, which extends the convolution integral for linear system to nonlinear system. There is a wide range of nonlinear engineering systems and structures which can be modeled as Volterra series. One question involved in modeling a functional relationship between the input and output of a system using Volterra series is to identify the Volterra kernel functions. In this article, a wavelet balance method-based approach is proposed to identify the Volterra kernel functions from observations of the in- and outgoing signals. The basic routine of the approach is that, from the system outputs under multilevel excitations, the Volterra series outputs of different orders are first estimated with the wavelet balance method, and then the Volterra kernel functions of different orders are separately estimated through their corresponding Volterra series outputs by expanding them with four-order B-spline wavelet on the interval. The simulation studies verify the effectiveness of the proposed Volterra kernel identification method.  相似文献   

14.
基于小波奇异性检测原理和神经网络非线性映射能力,结合结构基本模态参数,提出了一种结合小波神经网络与结构转角模态的损伤识别方法.首先,建立三跨连续梁的有限元模型获取结构模态参数,并对其进行Mexihat小波变换,通过系数图突变点判断结构损伤位置.然后,将小波系数模特征向量作为BP神经网络的输入,分别研究了该方法在单损伤和多损伤工况下的识别能力.最后将不同工况下神经网络预测值与结构实际损伤程度进行对比,得到单处损伤预测误差平均值为0.22%,多处损伤预测误差平均值分别为0.22%和0.18%,结果表明该方法在结构损伤识别方面的有较高有效性及精确度.  相似文献   

15.
张家铭  杨执钧  黄锐 《力学学报》2020,52(1):150-161
高维、非线性气动弹性系统的模型降阶是当前气动弹性力学与控制领域的研究热点之一.然而国内外现有的非线性模型降阶方法仍存在辨识算法复杂、精度有待提高等问题.本研究提出了一种基于非线性状态空间辨识的跨音速气动弹性模型降阶方法. 首先,该方法基于非定常空气动力的单位脉冲响应数据,采用特征系统实现算法对非线性状态空间模型的线性动力学部分进行系统辨识. 其次,引入状态和控制输入的非线性函数, 采用优化算法对非线性函数的系数矩阵进行优化,进而得到考虑非线性效应的空气动力降阶模型.为了验证该降阶模型在预测跨音速气动弹性力学行为的精确性,本文以三维机翼为研究对象,分别从基于非线性降阶模型的气动力辨识、跨声速颤振边界计算和极限环振荡预测三方面进行了算例验证,并与现有的模型降阶方法进行了对比, 进一步说明本文所提出方法的有效性.研究结果表明, 该降阶模型对上述三类问题的计算精度与直接流-固耦合方法相吻合,可用于高效预测飞行器跨声速气动弹性力学行为.   相似文献   

16.
Introduction Inrecentyears,thestudyondynamicbehaviorofnonlinearsystemhasbecomeanactive subjectinnonlinearscience[1-12].Chaosisakindofcomplicatedandirregularbehaviorcseated bynonlinearsystem,suchirregularphenomenonexistsinnatureandsocietywidely.Itiswell_ known,timeserieswithcomplicatedphenomenonandbehaviorincludingchaosexistinvarious complicatedsystemsandinengineeringtechniques,suchsituationsareusuallytreatedeffectively withchaotictheoriesandmethods.Uptonowseveralmaturedstatisticindexesformeasu…  相似文献   

17.
18.
In practical industries, there are many systems belong to nonlinear distributed parameter systems (DPS); unfortunately, modeling of nonlinear DPS is a challenging task because of the infinite-dimensional and nonlinear properties. To model the nonlinear DPS, a spatio-temporal Volterra model is presented with a series of spatio-temporal kernels. It can be considered as a spatial extension of the traditional Volterra model. One question involved in modeling a spatio-temporal functional relationship between the input and output of nonlinear distributed parameter systems using spatio-temporal Volterra series is to identify the spatio-temporal Volterra kernel functions. In addition, in order to derive a low-order model, the Karhunen–Loève (KL) decomposition is used for the time/space separation. The basic routine of the approach is that, first, from the system outputs, KL decomposition is used for the time/space separation, where the spatio-temporal output is decomposed into a few dominant spatial basis functions with temporal coefficients. Second, according to temporal coefficients of outputs under multilevel excitations, the Volterra series outputs of different orders are estimated with the wavelet balance method. Third, the Volterra kernel functions of different orders are separately estimated through their corresponding Volterra series outputs by expanding them with four-order B-spline wavelet on the interval (BSWI). Finally, the spatio-temporal Volterra model can be reconstructed using the time/space synthesis. The simulation studies verify the effectiveness of the presented identification method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号