首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We report a solid-state 17O NMR study of the 17O electric-field-gradient (EFG) and chemical shielding (CS) tensors for the carboxyl oxygen in an l-alanine hydrochloride. Using [17O]- and [13C,17O]-L-alanine hydrochlorides, both the magnitudes and the orientations in the molecular frame of the 17O EFG and CS tensors could be determined by the analysis of the 17O magic-angle spinning (MAS) and stationary NMR spectra. For the carbonyl oxygen, the smallest EFG tensor component, V(XX), and the largest EFG component, V(ZZ), roughly lies in the carboxyl molecular plane and the direction of V(XX) is parallel to the dipolar vector between 13C and 17O, that is, the direction of CO bond. The angles between the intermediate EFG component, VYY, and delta33 component, and between delta22 component and VZZ are found to be approximately 10 degrees and 35 degrees , respectively. We also present the results of the quantum chemical calculations for a theoretical hydrogen-bonding model, indicating that hydrogen-bonding strengths make it possible to vary both magnitudes and orientations of the carbonyl 17O EFG tensors in amino acid hydrochlorides.  相似文献   

2.
Cobalt-59 NMR experiments have been carried out on single-crystal and polycrystalline (powder) samples of (+/-)-tris(ethylenediamine)cobalt(III) chloride trihydrate, (+/-)-[Co(en)(3)]Cl(3) x 3H(2)O, and of its dehydrate. In addition, the X-ray crystal structure of the dehydrated sample has been determined. X-ray diffraction measurements confirm a long-held assumption that dehydration has only minor effects on the structure of the [Co(en)(3)](3+) cation. Nevertheless, these small differences have a detectable effect on the 59Co nuclear magnetic resonance properties of these compounds; in particular, the nuclear quadrupole coupling constant, C(Q). Straightforward identification of the c-axis for large single crystals of (+/-)-[Co(en)(3)]Cl(3).3H(2)O and of its dehydrate allowed us to obtain single-crystal 59 Co NMR data by orienting the crystals in an MAS rotor. Data collected on single crystals and polycrystalline samples indicate that C(Q)=-3.05+/-0.05 and -2.80+/-0.05 MHz for the hydrated and dehydrated samples, respectively; the signs have been assigned on the basis of a point charge model. The chemical shift tensor principal components were also determined: for the hydrated sample, delta(perpendicular)=7281+/-2 ppm, delta(parallel)=7004+/-4 ppm and delta(iso)=7189 ppm; for the dehydrated sample, delta(perpendicular)=7288+/-2 ppm, delta(parallel)=7008+/-4 ppm and delta(iso)=7195 ppm. The electric field gradient and chemical shift tensors are axially symmetric, as required by crystal symmetry.  相似文献   

3.
Solid Pb3O4 has been studied with 207Pb nuclear magnetic resonance (NMR) spectroscopy. The 207Pb NMR chemical-shift tensor of the Pb2+ site has principal values of delta11 = 1980 +/- 5 ppm, delta22 = 1540 +/- 5 ppm, and delta33 = -1108 +/- 10 ppm; delta(iso) = 804 +/- 10 ppm. The chemical-shift tensor of the Pb4+ site is axial, with principal values delta(parallel) = -1009 +/- 3 ppm and delta(perpendicular) = 1132 +/- 3 ppm; delta(iso) = -1091 +/- 3 ppm. The Pb4+-Pb2+ scalar coupling constant J(Pb-Pb) = 2.3 +/- 0.1 kHz. The main contribution to the Pb2- chemical-shift anisotropy is proposed to arise from an exchange interaction in the Pb2+-Pb2+ pairs, conventionally regarded as molecular [Pb2]4+ ions.  相似文献   

4.
Determination of NMR interaction parameters from double rotation NMR   总被引:1,自引:1,他引:0  
It is shown that the anisotropic NMR parameters for half-integer quadrupolar nuclei can be determined using double rotation (DOR) NMR at a single magnetic field with comparable accuracy to multi-field static and MAS experiments. The (17)O nuclei in isotopically enriched l-alanine and OPPh(3) are used as illustrations. The anisotropic NMR parameters are obtained from spectral simulation of the DOR spinning sideband intensities using a computer program written with the GAMMA spin-simulation libraries. Contributions due to the quadrupolar interaction, chemical shift anisotropy, dipolar coupling and J coupling are included in the simulations. In l-alanine the oxygen chemical shift span is 455 +/- 20 ppm and 350 +/- 20 ppm for the O1 and O2 sites, respectively, and the Euler angles are determined to an accuracy of +/- 5-10 degrees . For cases where effects due to heteronuclear J and dipolar coupling are observed, it is possible to determine the angle between the internuclear vector and the principal axis of the electric field gradient (EFG). Thus, the orientation of the major components of both the EFG and chemical shift tensors (i.e., V(33) and delta(33)) in the molecular frame may be obtained from the relative intensity of the split DOR peaks. For OPPh(3) the principal axis of the (17)O EFG is found to be close to the O-P bond, and the (17)O-(31)P one-bond J coupling ((1)J(OP)=161 +/- 2 Hz) is determined to a much higher accuracy than previously.  相似文献   

5.
We have presented a solid-state 17 O NMR study of [13C, 17 O]-L-alanine. Using the experimental results for the 13C-17 O dipolar vector and Euler angles, the absolute orientations of 17 O chemical shielding (CS) and electric-field-gradient (EFG) tensors with respect to the molecular frame can be determined for L-alanine. The present results suggest that the intermediate EFG tensor components, VYY, lie in the carboxylate plane and parallel to the C-O bond directions, while the least shielded components, delta11, and the intermediate CS tensor components, delta22, roughly lie in the molecular plane and the direction of delta22 components are approximately 38 degrees and 25 degrees off the C-O bonds for O1 and O2, respectively. These results are in reasonable agreement with those of our quantum chemical calculations reported previously.  相似文献   

6.
We have presented an experimental investigation of the carboxyl oxygen NMR parameters for four distinct sites in l-valine and l-isoleucine. The carboxyl (17)O quadrupolar coupling constant, C(Q), and isotropic chemical shift, delta(iso), for these compounds are obtained by analyzing two-dimensional (17)O multiple-quantum magic-angle spinning (MQMAS) and/or 1D MAS spectra. The values of C(Q) and delta(iso) found to be in the range of 7.00-7.85 MHz, and 264-314 ppm, respectively. Extensive quantum chemical calculations at the density functional levels have been performed for a full cluster of l-valine molecules and a few theoretical models. The calculated results indicated that there was a correlation between the (17)O NMR parameters and C-O bond lengths, which was helpful for the spectral assignment. They also demonstrated that the torsion angle of l-valine plays an important role in determining the magnitudes of (17)O NMR parameters.  相似文献   

7.
11B, 27Al and 29Si magic angle spinning NMR results are reported for the boroaluminosilicate mineral grandidierite (Mg, Fe)Al3SiBO9. Three distinct aluminium sites are identified, two AlO6 and one AlO5. Despite overlap of the centrebands from these sites the use of three magnetic fields (9.4, 11.7 and 14.1 T) allows unambiguous values for the isotropic chemical shift (delta iso), quadrupolar coupling constant (Cq) and quadrupolar asymmetry parameter (eta) to be deduced for each site. The NMR spectrum from the AlO5 site is simulated with parameters Cq = 8.7 +/- 0.1 MHz, eta = 0.95 +/- 0.05 and delta iso = 41 +/- 1 ppm which are compared to values from other well-defined AlO5 units.  相似文献   

8.
Application of the "quadrupolar Carr-Purcell Meiboom-Gill" (QCPMG) sequence permits the first natural abundance solid-state 25Mg NMR study of an organometallic magnesium compound, bis(cyclopentadienyl)magnesium. Analytical and numerical simulations of both static and magic-angle spinning QCPMG NMR spectra beget an axially symmetric 25Mg electric field gradient (EFG) tensor (quadrupolar asymmetry parameter, eta(Q)=0.01(1)) with a nuclear quadrupole coupling constant of C(Q)=5.80(5)MHz. Restricted Hartree-Fock and hybrid density functional theory (B3LYP) calculations are in good agreement with experimental EFG values and predict a chemical shielding anisotropy of about 40-50 ppm, which we attempt to elucidate by numerical simulations. The parameters and orientation of the 25Mg EFG tensor are rationalized from examination of the crystal structure and molecular symmetry. The NMR properties of the cyclopentadienyl rings are examined by 13C[1H] CPMAS NMR, RHF and hybrid-DFT (B3LYP) calculations, and simulations of the effects of chemical exchange on the 13C powder pattern.  相似文献   

9.
We report the first experimental determination of the carboxylate oxygen electric-field-gradient (EFG) and chemical shielding (CS) tensors in polycrystalline γ-glycine. Analysis of magic-angle spinning (MAS) and stationary 17O NMR spectra of [17O]-γ-glycine obtained at 9.4, 14.1, 16.4, and 18.8 T yields the magnitudes of the 17O EFG and CS tensors and the relative orientations between the two tensors. Extensive quantum chemical calculations at both the restricted Hartree–Fock and density functional levels have been performed to present the absolute tensor orientations in term of the molecular frame. We have demonstrated that 17O NMR tensor information could be unambiguously derived by the multiple field analyses of stationary 17O NMR spectra.  相似文献   

10.
We report the first experimental determination of the carboxylate oxygen electric-field-gradient (EFG) and chemical shielding (CS) tensors in polycrystalline γ-glycine. Analysis of magic-angle spinning (MAS) and stationary 17O NMR spectra of [17O]-γ-glycine obtained at 9.4, 14.1, 16.4, and 18.8 T yields the magnitudes of the 17O EFG and CS tensors and the relative orientations between the two tensors. Extensive quantum chemical calculations at both the restricted Hartree–Fock and density functional levels have been performed to present the absolute tensor orientations in term of the molecular frame. We have demonstrated that 17O NMR tensor information could be unambiguously derived by the multiple field analyses of stationary 17O NMR spectra.  相似文献   

11.
Three cis-dioxovanadium(V) complexes with similar N-salicylidenehydrazide ligands modeling hydrogen bonding interactions of vanadate relevant for vanadium haloperoxidases are studied by (51)V solid-state NMR spectroscopy. Their parameters describing the quadrupolar and chemical shift anisotropy interactions (quadrupolar coupling constant C(Q), asymmetry of the quadrupolar tensor eta(Q), isotropic chemical shift delta(iso), chemical shift anisotropy delta(sigma), asymmetry of the chemical shift tensor eta(sigma) and the Euler angles alpha, beta and gamma) are determined both experimentally and theoretically using DFT methods. A comparative study of different methods to determine the NMR parameters by numerical simulation of the spectra is presented. Detailed theoretical investigations on the DFT level using various basis sets and structural models show that by useful choice of the methodology, the calculated parameters agree to the experimental ones in a very good manner.  相似文献   

12.
Using calcium formate, alpha-Ca(DCOO)2, as a test sample, we explore how precisely deuteron quadrupole coupling (QC) and chemical shift (CS) tensors Q and sigma can currently be measured. The error limits, +/-0.09 kHz for the components of Q and +/-0.06 ppm for those of sigma, are at least three times lower than in any comparable previous experiment. The concept of a new receiver is described. A signal/noise ratio of 100 is realized in single-shot FT spectra. The measurement strategies and a detailed error analysis are presented. The precision of the measurement of Q is limited by the uncertainty of the rotation angles of the sample and that of sigma by the uncertainty of the phase correction parameters needed in FT spectroscopy. With a 4-sigma confidence, it is demonstrated for the first time that the unique QC tensor direction of a deuteron attached to a carbon deviates from the bond direction; the deviation found is (1.2+/-0.3 degrees ). Evidence is provided for intermolecular QC contributions. In terms of Q, their size is roughly 4 kHz. The deuteron QC tensors in alpha-Ca(DCOO)2 (two independent deuteron sites) are remarkable in three respects. For deuterons attached to sp2 carbons, first, the asymmetry factors eta and, second, the quadrupole coupling constants C(Q), are unusually small, eta1=0.018, eta2=0.011, and C(Q1)=(151.27+/-0.06) kHz, C(Q2)=(154.09+/-0.06) kHz. Third, the principal direction associated with the largest negative QC tensor component lies in and not, as usual, perpendicular to the molecular plane. A rationalization is provided for these observations. The CS tensors obtained are in quantitative agreement with the results of an earlier, less precise, line-narrowing multiple-pulse study of alpha-Ca(HCOO)2. The assignment proposed in that work is confirmed. Finally we argue that a further 10-fold increase of the measurement precision of deuteron QC tensors, and a 2-fold increase of that of CS tensors, should be possible. We indicate the measures that need to be taken.  相似文献   

13.
The experimental 13C NMR chemical shift components of uracil in the solid state are reported for the first time (to our knowledge), as well as newer data for the 15N nuclei. These experimental values are supported by extensive calculated data of the 13C, 15N and 17O chemical shielding and 17O and 14N electric field gradient (EFG) tensors. In the crystal, uracil forms a number of strong and weak hydrogen bonds, and the effect of these on the 13C and 15N chemical shift tensors is studied. This powerful combination of the structural methods and theoretical calculations gives a very detailed view of the strong and weak hydrogen bond formation by this molecule. Good calculated results for the optimized cluster in most cases (except for the EFG values of the 14N3 and 17O4 nuclei) certify the accuracy of our optimized coordinates for the hydrogen nuclei. Our reported RMSD values for the calculated chemical shielding and EFG tensors are smaller than those reported previously. In the optimized cluster the 6-311+G** basis set is the optimal one in the chemical shielding and EFG calculations, except for the EFG calculations of the oxygen nuclei, in which the 6-31+G** basis set is the optimal one. The optimal method for the chemical shielding and EFG calculations of the oxygen and nitrogen nuclei is the PW91PW91 method, while for the chemical shielding calculations of the 13C nuclei the B3LYP method gives the best results.  相似文献   

14.
5-Fluoro-dl-tryptophan (5F-Trp) is a very sensitive probe used to investigate orientation and dynamics of biomacromolecules at the in situ level. In order to establish a (19)F NMR strategy, the crystal structure and (19)F chemical shielding tensor of 5F-Trp are reported. A novel approach was developed to use F-F homonuclear dipole-dipole coupling information to analyze single-crystal NMR data without determining crystal orientations. The measured values for the principal components of the shielding tensor are sigma(11)=0.9, sigma(22)=-63.3, and sigma(33)=-82.9 ppm relative to TFA in D(2)O. The principal axes of the shielding tensors coincide with the indole ring symmetry, which makes it a straightforward and powerful tool to monitor protein alignment in oriented environments. Hartree-Fock (HF) and density functional theory (DFT) calculations of the chemical shielding tensors are also reported.  相似文献   

15.
Temperature dependence of (17)O nuclear quadrupole resonance frequencies was measured in solid 2-nitrobenzoic acid by a (1)H-(17)O nuclear quadrupole double resonance technique. The experimental results show the presence of a fast exchange of hydrogen atoms between two nonequivalent positions within the O-H ellipsis O hydrogen bonds. The hydrogen disorder is ascribed to concerted jumps of two hydrogen atoms within the hydrogen bonds connecting two molecules in a dimer. The energy difference DeltaE of the two hydrogen configurations is equal to DeltaE = 60 meV = 5.8 kJ/mol. The dipole structure of the (17)O NQR lines from the C-O-H oxygen positions was also measured at -100 degrees C and at room temperature. The orientation of the principal axes of the electric field gradient tensor with respect to the O-H bond and the sign of the quadrupole coupling constant were determined. The oxygen-hydrogen distance R(O-H), as determined from the dipole structure of the (17)O NQR lines is at -100 degrees C equal to 0.099 nm. At room temperature we observe a longer distance, R(O-H) = 0.101 nm, in agreement with the hydrogen intrabond exchange.  相似文献   

16.
59Co triple-quantum (3Q) MAS and single-pulse MAS NMR spectra of K3Co(CN)6 have been obtained at 14.1 T and used in a comparison of these methods for determination of small chemical shift anisotropies for spin I = 7/2 nuclei. From the 3QMAS NMR spectrum a spinning sideband manifold in the isotropic dimension with high resolution is reconstructed from the intensities of all spinning sidebands in the 3QMAS spectrum. The chemical shift anisotropy (CSA) parameters determined from this spectrum are compared with those obtained from MAS NMR spectra of (i) the complete manifold of spinning sidebands for the central and satellite transitions and of (ii) the second-order quadrupolar lineshapes for the centerband and spinning sidebands from the central transition. A good agreement between the three data sets, all of high precision, is obtained for the shift anisotropy (delta(sigma) = delta(iso) - delta(zz)) whereas minor deviations are observed for the CSA asymmetry parameter (eta(sigma)). The temperature dependence of the isotropic 59Co chemical shift has been studied over a temperature range from -28 to +76 degrees C. A linear and positive temperature dependence of 0.97 ppm/degree C is observed.  相似文献   

17.
The alkynyl carbon chemical shift (CS) tensors for 2-butyne-1,4-diol are reported, based on analyses of the carbon-13 NMR spectra of stationary-powder and slow magic-angle spinning (MAS) samples for which the alkynyl carbon nuclei are enriched in 13C. NMR spectra of slow MAS samples exhibit spinning-frequency-dependent fine structure typical of crystallographically equivalent but magnetically distinct nuclei. Simulated spectra of slow MAS samples of this two-spin system are particularly sensitive to the relative orientations of the CS tensors. In addition, the value of 1J(13C, 13C), +175 +/- 10 Hz, is determined by examination of the total NMR lineshape of slow MAS samples. The CS tensors are almost axially symmetric, delta11 = 158.9 +/- 1.0 ppm and delta22 = 155.7 +/- 1.0 ppm; the direction of greatest shielding is approximately along the alkynyl C-C bond, delta33 = -57.8 +/- 2.0 ppm. Both the magnitudes of the principal components of the CS tensors and their orientations are in agreement with those predicted from first-principles calculations at the HF and MP2 levels of theory. This study demonstrates the importance of examining the NMR spectra of homonuclear two-spin systems with and without MAS under a variety of conditions (e.g., two or more applied magnetic fields and slow MAS).  相似文献   

18.
17O NMR parameters (CQ, eta, delta(iso) and T1) are reported for both Si-O-Si and Si-OH fragments within a silica gel. The Si-OH units have a wide spread of parameters but are typically characterised by a very short T1 (approximately 0.1 ms) and CQ < 200 kHz. These observations have extremely important implications for the quantification of such units in these gels and related glassy materials by 17O NMR. In light of these observations, the 17O NMR experiments have been optimised and a distinct resonance from the OH group is observed in 1D static and magic angle spinning (MAS) NMR measurements as well in the multiple quantum (MQ) experiment.  相似文献   

19.
The chemical shifts of nuclei that have chemical shielding anisotropy, such as the 15N amide in a protein, show significant changes in their chemical shifts when the sample is altered from an isotropic state to an aligned state. Such orientation-dependent chemical shift changes provide information on the magnitudes and orientation of the chemical shielding tensors relative to the molecule's alignment frame. Because of the extremely high sensitivity of the chemical shifts to the sample conditions, the changes in chemical shifts induced by adding aligned bicelles do not arise only from the protein alignment but should also include the accumulated effects of environmental changes including protein-bicelle interactions. With the aim of determining accurate 15N chemical shielding tensor values for solution proteins, here we have used magic angle sample spinning (MAS) to observe discriminately the orientation-dependent changes in the 15N chemical shift. The application of MAS to an aligned bicelle solution removes the torque that aligns the bicelles against the magnetic field. Thus, the application of MAS to a protein in a bicelle solution eliminates only the molecular alignment effect, while keeping all other sample conditions the same. The observed chemical shift differences between experiments with and without MAS therefore provide accurate values of the orientation-dependent 15N chemical shifts. From the values for ubiquitin in a 7.5% (w/v) bicelle medium, we determined the 15N chemical shielding anisotropy (CSA) tensor. For this evaluation, we considered uncertainties in measuring the 1H-15N dipolar couplings and the 15N chemical shifts and also structural noise present in the reference X-ray structure, assuming a random distribution of each NH bond vector in a cone with 5 degrees deviation from the original orientation. Taking into account these types of noise, we determined the average 15N CSA tensor for the residues in ubiquitin as Delta sigma=-162.0+/-4.3 ppm, eta=0.18+/-0.02, and beta=18.6+/-0.5 degrees, assuming a 1H-15N bond length of 1.02 A. These tensor values are consistent with those obtained from solid-state NMR experiments.  相似文献   

20.
Isotope effect in hydrogen peroxide formation during H2O and D2O sonication   总被引:1,自引:0,他引:1  
The kinetics of hydrogen peroxide formation have been studied during H2O and D2O sonication in the presence of argon and oxygen (f = 22 kHz, I = 3.0 W cm-2, Pac = 0.52 W ml-1, V = 20 ml, T = 20 degrees C). It was found that the sonochemical reaction rate W has a zero order with respect to hydrogen peroxide (H2O, D2O or DHO2) concentration. In argon atmosphere the kinetic isotope effect was found to be equal to alpha = WH2O/WD2O = 2.2 +/- 0.3. The alpha value decreases in H2O-D2O mixtures with increasing H2O concentration. In oxygen atmosphere the isotope effect is not observed (alpha = 1.05 +/- 0.10). It is assumed that the revealed isotope effect is related to the mechanism of water sonolysis including the H2O-Ar* and D2O-Ar* energy transition, where Ar* is an argon atom in an excited state, in nonequilibrium plasma generated by the shock-wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号