首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The Lorentz Transformation as an Expression of Opposite Spacetime Relations. Abandonment of the Principle of Relativity Any increase of the characteristic energy of any body endowed with a clock, ΔE = EE0 (E0 being the rest energy), is connected with an increase of its time lapse, t/t0 = E/E0 (EINSTEIN 1907). Effective observation of this accelerating influence on the speed of any clock is restricted on the increase of the potential energy only. Increase of the kinetic energy \documentclass{article}\pagestyle{empty}\begin{document}$ \left({\frac{E}{{E_0 }}\, = \,\frac{1}{{\sqrt{1 - \frac{v}{{c^2 }}} }}} \right) $\end{document} is, on the contrary, connected with a decrease of the time lapse, a decrease of exactly the same but inverse (reciprocal) amount to the increase of the energy: \documentclass{article}\pagestyle{empty}\begin{document}$ t/t_0{\rm = }E_0 /E{\rm = }\sqrt {1 - \frac{{v^2 }}{{c^2 }}.} $\end{document}. Moreover this amount is that one postulated by the Lorentz Transformation. This effect is the well-known “time dilatation” of the Special Theory of Relativity, the “transversal Doppler effect”. The Lorentztransformation is of exclusively kinematical meaning and therefore takes no account of the energy increase connected with any motion. There is no reason, why the time accelerating effect of any energy rises should be absent in the case of kinetic energy, paying regard to is seem indispensable. Therefore the actual effect \documentclass{article}\pagestyle{empty}\begin{document}$ \sqrt {1 - \frac{{v^2 }}{{c^2 }}} $\end{document} has to be given as a superposition of the time accelerating energy effect \documentclass{article}\pagestyle{empty}\begin{document}$ 1/\sqrt {1 - \frac{{v^2 }}{{c^2 }}} $\end{document} and a decelerating kinematic effect of “double” (inverse square) amount: 1 – v2/c2. Modified transformation equations are derived which pay regard to this subdivision of the actual relations concerning times and local scales, and whose interated form is nevertheless identical with the classical Lorentz Transformation, if kinetic energy is the sole one being present. Of course this new subdivision of the content of meaning in the transformations is in contradiction with the ?principle of relativity”?, it presumes the existence of an inertial frame absolutely at rest related to the universe, A series of arguments is asserted which let appear the existence of such an absolute frame more fascinating than the equivalence of the variety of all inertial frames.  相似文献   

2.
The gravity theories of Newton and Einstein are giving opposite sentences about the velocity of light in gravitational field. According to the Newtonian theory the velocity v in gravitational field is greater than the velocity c in a field-free space: v > c. According to general relativity theory we have a smaller velocity: v < c. For a spherical symmetric gravitational field Newton's theory gives \documentclass{article}\pagestyle{empty}\begin{document}$ v \approx c\left({1 + \frac{{fM}}{{c^2 r}}} \right) $\end{document} but Einstein's theory of 1911 gives \documentclass{article}\pagestyle{empty}\begin{document}$ v \approx c\left({1 - \frac{{fM}}{{c^2 r}}} \right) $\end{document} and general relativity gives \documentclass{article}\pagestyle{empty}\begin{document}$ v \approx c\left({1 - 2\frac{{fM}}{{rc^2 }}} \right) $\end{document}. Therefore, the radarecho-measurations of Shapiro are the experimentum crucis for Einstein's against Newton's theory.  相似文献   

3.
Einstein's Hermitian Theory of Relativity as Unification of Gravo- and Chromodynamics Einstein's Hermitian unified field theory is the continuation of the Riemannian GRG to complexe values with a Hermitian fundamental tensor gμv = gv*μ This complexe continuation of GRG implies the possibility of matter and anti matter with a sort of CPT theorem. — Einstein himself has interpreted his theory as a unification and generalization of the Einstein and Maxwell theory, th. i. of gravodynamics and of electrodynamics. However — according the EIH approximation —, from Einstein's equations no Coulomb-like forces between the charges are resulting (INFELD, 1950). But, the forces between two charges ?A and ?B have the form (Treder 1957) It is interesting that such forces are postulated in the classical models of the chromodynamics of the interactions between quarks (for the confinement of their motions. If we interprete the purely imaginary part gμv of the hermitian metrics gμv=gμv+gμv as the dual of the field of gluons then, all peculiarities of Einstein's theory become physically meaningful. — Einstein's own interpretation suggests that the both long-range fields, gravitation and electromagnetism, must be unified in a geometrical field theory. However, the potential α/r + ε/2 has a “longer range” than the Coulomb potential ~1, and such an asymptotical potential ~ ε/2 is resulting from Einstein's equations (TREDER 1957). In Einstein's theory there are no free charges with \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_A^n {\varepsilon A} $\end{document}. (Wyman 1950) because the field mass of a charged particle becomes infinite asymptotically: That means, in a chromodynamics we dont's have free quarks. The same divergence are resulting from one-particle systems with non-vanishing total charges: M~ε2r. However, if the total charges vanish because in a domain ~L3 the positive sources are compensated by negative sources, the field masses of the n-charge systems become finite. From the gravitational part of Einstein's equations we get field masses which are the masses measured by observers in distances r ? L. That means, the masses of quark systems with the colour condition \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_A^n {\varepsilon A} $\end{document} are proportional to the linear dimension L of the system.  相似文献   

4.
Ute Bahr 《Annalen der Physik》1977,489(4):267-285
Effective Elastic Properties of Finite Heterogeneous Media - Application to Rayleigh-waves Rayleigh waves in a heterogeneous material (multiphase mixtures, composite materials, polycrystals) are governed by integrodifferential equations derived by the aid of known methods for infinite heterogeneous media. According to this wave equation the velocity depends on the frequency, and the waves are damped. After some simplifications (isotropy, nonrandom elastic constants) the following is obtained: if the fluctuations of the mass density are restricted to the vicinity of the boundary, the frequency dependent part of the velocity behaves like \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{l^3 \omega ^3}}{{{\mathop c\limits^\circ} _t^3}} $\end{document} and the damping is proportional to \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{l^4 \omega ^5}}{{{\mathop c\limits^\circ} _t^5}} $\end{document}, whereas \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{l^2 \omega ^2}}{{{\mathop c\limits^\circ} _t^2}} $\end{document} respectively \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{l^3 \omega ^4}}{{{\mathop c\limits^\circ} _t^4}} $\end{document} is found if the fluctuations are present in the whole half-space. From this it is seen, what assumptions are necessary to describe the waves by differential equations with frequenc y-dependent mass density.  相似文献   

5.
The zero range limit of one dimensional Schrödinger operator is studied by scaling technique and new results are obtained for potentials V with \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \smallint \limits_{\rm R} $\end{document} V(x)dx = 0.  相似文献   

6.
Einstein's Field Theory with Tele-Parallelism and Dirac's Classical Theory of Electrons (Unified Field Theory with the Vector-Potential as a Reference-Tetrad) The Einstein-Maxwell theory of gravitation and electro-magnetism with Dirac-gauge AiAi = m2c4/e2 of the vector-potential Ai can be written as a purely geometrical field theory. The geometry of this field theory is Einstein's “Riemannian geometry with teleparallelism” and the vectorpotential is given by the time-like component of the tetrads h which define this tele-parallelism; we have -Physically, this unified field theory implies a generalization of the Einstein-Maxwell equations by introduction of a “current without current” describing Faraday's “gravoelectrical induction” corresponding with Dirac's electronic current λAi.  相似文献   

7.
From an electrodynamic and simple quantum-mechanical point of view a model is proposed which explains the phenomena of minimum arc current as well as the formation and extinction of tiny emitting sites interacting together in cold cathode spots (called type A) on the base of a specific coupling between the tunnelling “average” electrons and the metal bulk phonon field. The model seems to be especially applicable to such experimental conditions where typical trumpetlike microcraters with pronounced rims with diameters in the range 0.5—1 μm are left by microspot ensembles on the cathode surface. The model yields emitting-site lifetimes, currents, current densities and radii in the order of τps ? \documentclass{article}\pagestyle{empty}\begin{document}$ \sqrt {3M/m} $\end{document} τ0 ? 10?11 sec, Imin = 4π ? \documentclass{article}\pagestyle{empty}\begin{document}$ \sqrt {n/\mu _0 m} $\end{document}? 0.4 A, j = nevs ? 4 · 1013 A/m2 and ra ? 2cPl ? 30 nm (τps…lifetime of short wave phonons, M … atom mass, m … electron mass, τ0 … mean free collision time of Fermi electrons at room temperature, n … conduction electron density in the metal bulk, vs … metal bulk sound velocity, c … light velocity, ωPl … metal bulk plasma frequency (values for copper). The lifetime and the interaction diameter of an emitting site (event) ensemble are derived to τpl ?(M/m) τp ? 3 nsec and Λpl = νsτpl ? 10 μ (τpΛpl … lifetime and mean free path of long wave phonons).  相似文献   

8.
Adsorption, Desorption, Dissociation and Recombination of SO2 on a Palladium (111) Surface The adsorption, desorption as well as decomposition- and recombination-reactions of SO2 on Pd(1 1 1) were studied for temperatures T = 160-1200 K using LEED, AES, thermal desorption-mass-spectrometry and molecular beam techniques. At 160 K SO2 adsorption with an initial sticking coefficient s0 = 1 is molecular and non-ordered; it is characterized by a precursor state and leads to a saturation coverage Θ ≈ 0,3. Heating up the adlayer SO2 is the only desorption product, namely directly from (SO2)ad in the α-peak (Tmax = 240 K) and as the product of recombination of (SO)ad and Oad in the β-peak (Tmax = 330-370 K). A great part of the oxygen originating from SO2-dissociation is incorporated into the subsurface region, resulting in an atomic S-adlayer with ΘS = 1/7 which exhibits a (\documentclass{article}\pagestyle{empty}\begin{document}$ \sqrt 7 {\rm x}\sqrt 7 $\end{document}) R ± 19,1°-superstructure. This structure is also observed, if a 320 K-SO2-exposure induced (2 × 2)-SO saturation layer with ΘSO = 0,5 is heated up or if SO, is exposed at T > 500 K, where it corresponds to ΘS, values of 3/7 and 2/7, respectively. Furthermore the poisoning effect of adsorbed sulfur on the dissociative O2,-adsorption and the oxidation of sulfur by heating up an O? S-coadsorption layer were studied. As a result the following kinetic parameters (activation energies and frequency factors) were determined: .  相似文献   

9.
Composite Pulses in Nuclear Magnetic Resonance For the compensation of spatial inhomogeneity of the radiofrequency field and a resonance offset in NMR experiments, composite pulses are used instead of the conventional single pulses. In the present work the effect of a resonance offset on composite pulses is treated quantitatively. It will be shown also experimentally that the various constructions for \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{\pi }{2} $\end{document} composite pulses (contrary to π composite pulses) lead to only two different degrees of compensation depending on the choice of the phase of the pulses or the sign of the resonance offset.  相似文献   

10.
In the given paper the scattering of a spinless particle by another spinless particle bound in the external field is considered in the three-dimensional case. The external field is represented by the rectangular well and the two-particle interaction is parametric. The influence of the single-particle basis and of the strength of the two-particle interaction on the resonance structure of the cross-section is investigated in the limit of weak coupling between channels. It is shown that the dependence of the number of resonances Nr on the number of single-particle levels N is given by the following formula: \documentclass{article}\pagestyle{empty}\begin{document}$ N_r = \frac{{N^2 + (N - 4)^2 }}{2}. $\end{document}. The scattering of a particle by another particle bound in the field of a core is considered.  相似文献   

11.
In this paper we consider the emission processes of a relativistic electron moving in the field of a plane electromagnetic wave and in a homogeneous magnetic field. A detailed analysis of the most important characteristics of the radiation properties for arbitrary values of the magnetic field, compared with \documentclass{article}\pagestyle{empty}\begin{document}$ [H_0 = \frac{{m^2 c^3}}{{e\hbar}}]$\end{document} = 4.41.1013 gauss, is presented.  相似文献   

12.
Let A 1,…,A N be complex self-adjoint matrices and let ρ be a density matrix. The Robertson uncertainty principle
gives a bound for the quantum generalized covariance in terms of the commutators [A h ,A j ]. The right side matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case N=2m+1. Let f be an arbitrary normalized symmetric operator monotone function and let 〈⋅,⋅〉 ρ,f be the associated quantum Fisher information. Based on previous results of several authors, we propose here as a conjecture the inequality
whose validity would give a non-trivial bound for any N∈ℕ using the commutators i[ρ,A h ].  相似文献   

13.
We constrain the possible time variation of the Higgs vacuum expectation value (v) by recent results on the primordial 4He abundance (Y P ). For that, we use an analytic approach which enables us to take important issues into consideration, that have been ignored by previous works, like the v-dependence of the relevant cross sections of deuterium production and photodisintegration, including the full Klein–Nishina cross section. Furthermore, we take a non-equilibrium Ansatz for the freeze-out concentration of neutrons and protons and incorporate the latest results on the neutron decay. Finally, we approximate the key-parameters of the primordial 4He production (the mean lifetime of the free neutron and the binding energy of the deuteron) by terms of (where v 0 denotes the present theoretical estimate). Eventually, we derive the relation and the most stringent limit on a possible time variation of v is given by: .  相似文献   

14.
P2‐type NaxM O2 (M = Mn and Co) is a promising cathode material for low‐cost sodium ion secondary batteries. In this structure, there are two different crystallographic Nai (i = 1 and 2) sites with different Coulomb potential $ (\varphi _i)$ provided by M4–x and O2–. Here, we experimentally determine a difference ${(\rm \Delta }\varepsilon \equiv \varepsilon _1 - \varepsilon _2)$ of Na‐site energies ${(}\varepsilon _i \equiv e\varphi {\kern 1pt} _i)$ based on the temperature dependence of the site occupancies. We find that ${\rm \Delta }\varepsilon \;{=}\;56\;{K}$ for Na0.52MnO2 is significantly smaller than 190 K for Na0.59CoO2. We interpret the suppressed ${\rm \Delta }\varepsilon $ in Na0.52MnO2 in terms of the screening effect of the Na+ charge. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We discuss in relativistic quantum mechanics the excitation of atoms by photons, assuming an electromagnetic interaction of the form A. It turns out, that when localized in a region V at a certain time x0 a photon would excite atoms also outside the light-cone of V. We arrive thus at a contradiction between quantum mechanics and special relativity.  相似文献   

16.
In the framework of the littlest Higgs (LH) model, we consider the processes and , and we calculate the contributions of new particles to the cross sections of these processes in the future high energy e + e- collider (ILC) with TeV. We find that, with reasonable values of the free parameters, the deviations of the cross sections for the processes from their SM values might be comparable to the future ILC measurement precision. The contributions of the light Higgs boson H0 to the process are significantly large in all of the parameter space preferred by the electroweak precision data, which might be detected in the future ILC experiments. However, the contributions of the new gauge bosons BH and ZH to this process are very small.Received: 22 February 2005, Revised: 27 April 2005, Published online: 6 July 2005PACS: 12.60.Cn, 14.70.Pw, 14.80.Cp  相似文献   

17.
In this paper, we discuss the coherence of the reduced state in system H A ?H B under taking different quantum operations acting on subsystem H B . Firstly, we show that for a pure bipartite state, the coherence of the final subsystem H A under the sum of two orthonormal rank 1 projections acting on H B is less than or equal to the sum of the coherence of the state after two orthonormal projections acting on H B , respectively. Secondly, we obtain that the coherence of reduced state in subsystem H A under random unitary channel \({\Phi }(\rho )={\sum }_{s}\lambda _{s}U_{s}\rho U_{s}^{\ast }\) acting on H B , is equal to the coherence of the state after each operation \({\Phi }_{s}(\rho )=\lambda _{s}U_{s}\rho U_{s}^{\ast }\) acting on H B for every s. In addition, for general quantum operation \({\Phi }(\rho )={\sum }_{s}F_{s}\rho F_{s}^{\ast }\) on H B , we get the relation
$$ C\left (\left ((I\otimes {\Phi })\rho ^{AB}\right )^{A}\right )\leq \sum \limits _{s}C\left (\left ((I\otimes {\Phi }_{s})\rho ^{AB}\right )^{A}\right ). $$
  相似文献   

18.
19.
We consider a random walk X n in ℤ+, starting at X 0=x≥0, with transition probabilities
and X n+1=1 whenever X n =0. We prove as n ∞ when δ∈(1,2). The proof is based upon the Karlin-McGregor spectral representation, which is made explicit for this random walk.  相似文献   

20.
We consider Lie(G)-valued G-invariant connections on bundles over spaces ${G/H,\, \mathbb{R}\times G/H\, {\rm and}\, \mathbb{R}^2\times G/H}We give a geometric construction of the ${\mathcal{W}_{1+\infty}}We consider Lie(G)-valued G-invariant connections on bundles over spaces G/H, \mathbbR×G/H and \mathbbR2×G/H{G/H,\, \mathbb{R}\times G/H\, {\rm and}\, \mathbb{R}^2\times G/H}, where G/H is a compact nearly K?hler six-dimensional homogeneous space, and the manifolds \mathbbR×G/H{\mathbb{R}\times G/H} and \mathbbR2×G/H{\mathbb{R}^2\times G/H} carry G 2- and Spin(7)-structures, respectively. By making a G-invariant ansatz, Yang-Mills theory with torsion on \mathbbR×G/H{\mathbb{R}\times G/H} is reduced to Newtonian mechanics of a particle moving in a plane with a quartic potential. For particular values of the torsion, we find explicit particle trajectories, which obey first-order gradient or hamiltonian flow equations. In two cases, these solutions correspond to anti-self-dual instantons associated with one of two G 2-structures on \mathbbR×G/H{\mathbb{R}\times G/H}. It is shown that both G 2-instanton equations can be obtained from a single Spin(7)-instanton equation on \mathbbR2×G/H{\mathbb{R}^2\times G/H}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号