首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We study the following problem: an instance is a word with every letter occurring twice. A solution is a 2-coloring of its letters such that the two occurrences of every letter are colored with different colors. The goal is to minimize the number of color changes between adjacent letters.This is a special case of the paint shop problem for words, which was previously shown to be NP-complete. We show that this special case is also NP-complete and even APX-hard. Furthermore, derive lower bounds for this problem and discuss a transformation into matroid theory enabling us to solve some specific instances within polynomial time.  相似文献   

2.
The problem of factoring an integer and many other number-theoretic problems can be formulated in terms of binary quadratic Diophantine equations. This class of equations is also significant in complexity theory, subclasses of it having provided most of the natural examples of problems apparently intermediate in difficulty between P and NP-complete problems, as well as NP-complete problems [2, 3, 22, 26]. The theory of integral quadratic forms developed by Gauss gives some of the deepest known insights into the structure of classes of binary quadratic Diophantine equations. This paper establishes explicit polynomial worst-case running time bounds for algorithms to solve certain of the problems in this theory. These include algorithms to do the following: (1) reduce a given integral binary quadratic form; (2) quasi-reduce a given integral ternary quadratic form; (3) produce a form composed of two given integral binary quadratic forms; (4) calculate genus characters of a given integral binary quadratic form, when a complete prime factorization of its determinant D is given as input; (5) produce a form that is the square root under composition of a given form (when it exists), when a complete factorization of D and a quadratic nonresidue for each prime dividing D is given as input.  相似文献   

3.
4.
The concept of flexibility—originated in the context of heat exchanger networks—is associated with a substructure which guarantees the performance of the original structure, in a given range of possible states. We extend this concept to combinatorial optimization problems, and prove several computational complexity results in this new framework.Under some monotonicity conditions, we prove that a combinatorial optimization problem polynomially transforms to its associated flexibility problem, but that the converse need not be true.In order to obtain polynomial flexibility problems, we have to restrict ourselves to combinatorial optimization problems on matroids. We also prove that, when relaxing in different ways the matroid structure, the flexibility problems become NP-complete. This fact is shown by proving the NP-completeness of the flexibility problems associated with the Shortest Path, Minimum Cut and Weighted Matching problems.  相似文献   

5.
6.
This paper investigates the effectiveness of using finite improvement algorithms for solving decision, search, and optimization problems. Finite improvement algorithms operate in a finite number of iterations, each taking a polynomial amount of work, where strict improvement is required from iteration to iteration. The hardware, software, and way of measuring complexity found in the polynomial setting are modified to identify the concept of repetition and define the new classes of decision problems,FI andNFI. A firstNFI-complete problem is given using the idea ofFI-transformations. Results relating these new classes toP, NP, andNP-complete are given. It is shown that if an optimization problem in a new classPGS isNP-hard, thenNP=co-NP. TwoPGS problems are given for which no polynomial algorithms are known to exist.  相似文献   

7.
We describe a polynomial time algorithm to compute Jacobi symbols of exponentially large integers of special form, including so-called sparse integers which are exponentially large integers with only polynomially many nonzero binary digits. In a number of papers sequences of Jacobi symbols have been proposed as generators of cryptographically secure pseudorandom bits. Our algorithm allows us to use much larger moduli in such constructions. We also use our algorithm to design a probabilistic polynomial time test which decides if a given integer of the aforementioned type is a perfect square (assuming the Extended Riemann Hypothesis). We also obtain analogues of these results for polynomials over finite fields. Moreover, in this case the perfect square testing algorithm is unconditional. These results can be compared with many known NP-hardness results for some natural problems on sparse integers and polynomials.  相似文献   

8.
Given a matroidM with distinguished elemente, aport oracie with respect toe reports whether or not a given subset contains a circuit that containse. The first main result of this paper is an algorithm for computing ane-based ear decomposition (that is, an ear decomposition every circuit of which contains elemente) of a matroid using only a polynomial number of elementary operations and port oracle calls. In the case thatM is binary, the incidence vectors of the circuits in the ear decomposition form a matrix representation forM. Thus, this algorithm solves a problem in computational learning theory; it learns the class ofbinary matroid port (BMP) functions with membership queries in polynomial time. In this context, the algorithm generalizes results of Angluin, Hellerstein, and Karpinski [1], and Raghavan and Schach [17], who showed that certain subclasses of the BMP functions are learnable in polynomial time using membership queries. The second main result of this paper is an algorithm for testing independence of a given input set of the matroidM. This algorithm, which uses the ear decomposition algorithm as a subroutine, uses only a polynomial number of elementary operations and port oracle calls. The algorithm proves a constructive version of an early theorem of Lehman [13], which states that the port of a connected matroid uniquely determines the matroid.Research partially funded by NSF PYI Grant No. DDM-91-96083.Research partially funded by NSF Grant No CCR-92-10957.  相似文献   

9.
10.
It is proved that, if M is a binary matroid, then every cocircuit of M has even cardinality if and only if M can be obtained by contracting some other binary matroid M+ onto a single circuit. This is the natural analog of the Euler circuit theorem for graphs. It is also proved that every coloop-free matroid can be obtained by contracting some other matroid (not in general binary) onto a single circuit.  相似文献   

11.
We investigate properties of Ehrhart polynomials for matroid polytopes, independence matroid polytopes, and polymatroids. In the first half of the paper we prove that, for fixed rank, Ehrhart polynomials of matroid polytopes and polymatroids are computable in polynomial time. The proof relies on the geometry of these polytopes as well as a new refined analysis of the evaluation of Todd polynomials. In the second half we discuss two conjectures about the h *-vector and the coefficients of Ehrhart polynomials of matroid polytopes; we provide theoretical and computational evidence for their validity.  相似文献   

12.
We classify into polynomial time or NP-complete all three nonempty part sandwich problems. This solves the polynomial dichotomy for this class of problems.  相似文献   

13.
For any rank r oriented matroid M, a construction is given of a ??topological representation?? of M by an arrangement of homotopy spheres in a simplicial complex which is homotopy equivalent to S r?C1 . The construction is completely explicit and depends only on a choice of maximal flag in M. If M is orientable, then all Folkman-Lawrence representations of all orientations of M embed in this representation in a homotopically nice way.  相似文献   

14.
Polar graphs generalise bipartite graphs, cobipartite graphs, and split graphs, and they constitute a special type of matrix partitions. A graph is polar if its vertex set can be partitioned into two, such that one part induces a complete multipartite graph and the other part induces a disjoint union of complete graphs. Deciding whether a given arbitrary graph is polar, is an NPNP-complete problem. Here, we show that for permutation graphs this problem can be solved in polynomial time. The result is surprising, as related problems like achromatic number and cochromatic number are NPNP-complete on permutation graphs. We give a polynomial-time algorithm for recognising graphs that are both permutation and polar. Prior to our result, polarity has been resolved only for chordal graphs and cographs.  相似文献   

15.
《Discrete Mathematics》2022,345(6):112830
Given a matroid together with a coloring of its ground set, a subset of its elements is called rainbow colored if no two of its elements have the same color. We show that if an n-element rank r binary matroid M is colored with exactly r colors, then M either contains a rainbow colored circuit or a monochromatic cocircuit. As the class of binary matroids is closed under taking duals, this immediately implies that if M is colored with exactly n?r colors, then M either contains a rainbow colored cocircuit or a monochromatic circuit. As a byproduct, we give a characterization of binary matroids in terms of reductions to partition matroids.Motivated by a conjecture of Bérczi, Schwarcz and Yamaguchi, we also analyze the relation between the covering number of a binary matroid and the maximum number of colors or the maximum size of a color class in any of its rainbow circuit-free colorings. For simple graphic matroids, we show that there exists a rainbow circuit-free coloring that uses each color at most twice only if the graph is (2,3)-sparse, that is, it is independent in the 2-dimensional rigidity matroid. Furthermore, we give a complete characterization of minimally rigid graphs admitting such a coloring.  相似文献   

16.
The theory of complexity, a continuation of the theory of computability, investigates the number of operations and quantity of memory required to solve given problems. Problems can thus be classified as polynomial or non-polynomial (intractable) according to the quantity of resource required for their solution. The classNP-complete collects a number of problems polynomially reducible one to the other, for which no polynomial solution is known to exist.  相似文献   

17.
Let M be a matroid. When M is 3-connected, Tutte's Wheels-and-Whirls Theorem proves that M has a 3-connected proper minor N with |E(M)−E(N)|=1 unless M is a wheel or a whirl. This paper establishes a corresponding result for internally 4-connected binary matroids. In particular, we prove that if M is such a matroid, then M has an internally 4-connected proper minor N with |E(M)−E(N)|?3 unless M or its dual is the cycle matroid of a planar or Möbius quartic ladder, or a 16-element variant of such a planar ladder.  相似文献   

18.
There is no polynomially bounded algorithm to test if a matroid (presented by an “independence oracle”) is binary. However, there is one to test graphicness. Finding this extends work of previous authors, who have given algorithms to test binary matroids for graphicness. Our main tool is a new result that ifM′ is the polygon matroid of a graphG, andM is a different matroid onE(G) with the same rank, then there is a vertex ofG whose star is not a cocircuit ofM.  相似文献   

19.
Vertigan has shown that if M is a binary matroid, then |T M (?ι,ι)|, the modulus of the Tutte polynomial of M as evaluated in (?ι,ι), can be expressed in terms of the bicycle dimension of M. In this paper, we describe how the argument of the complex number T M (?ι,ι) depends on a certain $\mathbb{Z}/4\mathbb {Z}$ -valued quadratic form that is canonically associated with M. We show how to evaluate T M (?ι,ι) in polynomial time, as well as the canonical tripartition of M and further related invariants.  相似文献   

20.
Polar cographs     
A graph is (s, k)-polar if there exists a partition A, B of its vertex set such that A induces a complete s-partite graph and B a disjoint union of at most k cliques. Recognizing a polar graph is known to be NP-complete. Here we consider the class of polar graphs which are also cographs. We provide polynomial time algorithms and forbidden subgraphs characterizations for problems related to polar cographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号