首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The prize-collecting generalized minimum spanning tree problem (PC-GMSTP), is a generalization of the generalized minimum spanning tree problem (GMSTP) and belongs to the hard core of -hard problems. We describe an exact exponential time algorithm for the problem, as well we present several mixed integer and integer programming formulations of the PC-GMSTP. Moreover, we establish relationships between the polytopes corresponding to their linear relaxations and present an efficient solution procedure that finds the optimal solution of the PC-GMSTP for graphs with up 240 nodes.  相似文献   

3.
This paper describes an attribute based tabu search heuristic for the generalized minimum spanning tree problem (GMSTP) known to be NP-hard. Given a graph whose vertex set is partitioned into clusters, the GMSTP consists of designing a minimum cost tree spanning all clusters. An attribute based tabu search heuristic employing new neighborhoods is proposed. An extended set of TSPLIB test instances for the GMSTP is generated and the heuristic is compared with recently proposed genetic algorithms. The proposed heuristic yields the best results for all instances. Moreover, an adaptation of the tabu search algorithm is proposed for a variation of the GMSTP in which each cluster must be spanned at least once.  相似文献   

4.
We consider the generalized version of the classical Minimum Spanning Tree problem where the nodes of a graph are partitioned into clusters and exactly one node from each cluster must be connected. We present a Variable Neighborhood Search (VNS) approach which uses three different neighborhood types. Two of them work in complementary ways in order to maximize search effectivity. Both are large in the sense that they contain exponentially many candidate solutions, but efficient polynomial-time algorithms are used to identify best neighbors. For the third neighborhood type we apply Mixed Integer Programming to optimize local parts within candidate solution trees. Tests on Euclidean and random instances with up to 1280 nodes indicate especially on instances with many nodes per cluster significant advantages over previously published metaheuristic approaches. This work is supported by the RTN ADONET under grant 504438.  相似文献   

5.
We consider the complete graph on n vertices whose edges are weighted by independent and identically distributed edge weights and build the associated minimum weight spanning tree. We show that if the random weights are all distinct, then the expected diameter of such a tree is Θ(n1/3). This settles a question of Frieze and Mc‐Diarmid (Random Struct Algorithm 10 (1997), 5–42). The proofs are based on a precise analysis of the behavior of random graphs around the critical point. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

6.
Evolutionary algorithms are applied to problems that are not well understood as well as to problems in combinatorial optimization. The analysis of these search heuristics has been started for some well-known polynomial solvable problems. Such analyses are starting points for the analysis of evolutionary algorithms on difficult problems. We present the first runtime analysis of a multi-objective evolutionary algorithm on a NP-hard problem. The subject of our analysis is the multi-objective minimum spanning tree problem for which we give upper bounds on the expected time until a simple evolutionary algorithm has produced a population including for each extremal point of the Pareto front a corresponding spanning tree. These points are of particular interest as they give a 2-approximation of the Pareto front. We show that in expected pseudopolynomial time a population is produced that includes for each extremal point a corresponding spanning tree.  相似文献   

7.
8.
This paper studies heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree using edges that are as similar as possible. Given an undirected labelled connected graph, the minimum labelling spanning tree problem seeks a spanning tree whose edges have the smallest number of distinct labels. This problem has been shown to be NP-hard. A Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighbourhood Search (VNS) are proposed in this paper. They are compared with other algorithms recommended in the literature: the Modified Genetic Algorithm and the Pilot Method. Nonparametric statistical tests show that the heuristics based on GRASP and VNS outperform the other algorithms tested. Furthermore, a comparison with the results provided by an exact approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed heuristics.  相似文献   

9.
In the Minimum Label Spanning Tree problem, the input consists of an edge-colored undirected graph, and the goal is to find a spanning tree with the minimum number of different colors. We investigate the special case where every color appears at most r times in the input graph. This special case is polynomially solvable for r=2, and NP- and APX-complete for any fixed r?3.We analyze local search algorithms that are allowed to switch up to k of the colors used in a feasible solution. We show that for k=2 any local optimum yields an (r+1)/2-approximation of the global optimum, and that this bound is tight. For every k?3, there exist instances for which some local optima are a factor of r/2 away from the global optimum.  相似文献   

10.
** Email: msevkli{at}fatih.edu.tr*** Corresponding author. Email: mehmetaydin{at}acm.org, mehmet.aydin{at}beds.ac.uk Variable neighbourhood search (VNS) is one of the most recentmetaheuristics used for solving combinatorial optimization problemsin which a systematic change of neighbourhood with a local searchis carried out. However, as happens with other metaheuristics,it takes a long time to reach some useful solutions while solvingsome sort of hard combinatorial problems such as job shop scheduling(JSS). Parallelization is one of the most considerable policiesto overcome this matter. In this paper, firstly, a number ofVNS algorithms are examined for JSS problems and then four differentparallelization policies are taken into account to determineefficient parallelization for VNS algorithms. The experimentationreveals the performance of various VNS algorithms and the efficiencyof policies to follow in parallelization. In the end, the unilateral-ringtopology, a noncentral parallelization method, is found as themost efficient policy.  相似文献   

11.
We propose a GRASP using an hybrid heuristic-subproblem optimization approach for the Multi-Level Capacitated Minimum Spanning Tree (MLCMST) problem. The motivation behind such approach is that to evaluate moves rearranging the configuration of a subset of nodes may require to solve a smaller-sized MLCMST instance. We thus use heuristic rules to define, in both the construction and the local search phases, subproblems which are in turn solved exactly by employing an integer programming model. We report numerical results obtained on benchmark instances from the literature, showing the approach to be competitive in terms of solution quality. The proposed GRASP have in fact improved the best known upper bounds for almost all of the considered instances.  相似文献   

12.
The problem of reducing the bandwidth of a matrix consists of finding a permutation of rows and columns of a given matrix which keeps the non-zero elements in a band as close as possible to the main diagonal. This NP-complete problem can also be formulated as a vertex labelling problem on a graph, where each edge represents a non-zero element of the matrix. We propose a variable neighbourhood search based heuristic for reducing the bandwidth of a matrix which successfully combines several recent ideas from the literature. Empirical results for an often used collection of 113 benchmark instances indicate that the proposed heuristic compares favourably to all previous methods. Moreover, with our approach, we improve best solutions in 50% of instances of large benchmark tests.  相似文献   

13.
We present a study on heuristic solution approaches to the minimum labelling Steiner tree problem, an NP-hard graph problem related to the minimum labelling spanning tree problem. Given an undirected labelled connected graph, the aim is to find a spanning tree covering a given subset of nodes of the graph, whose edges have the smallest number of distinct labels. Such a model may be used to represent many real world problems in telecommunications and multimodal transportation networks. Several metaheuristics are proposed and evaluated. The approaches are compared to the widely adopted Pilot Method and it is shown that the Variable Neighbourhood Search that we propose is the most effective metaheuristic for the problem, obtaining high quality solutions in short computational running times.  相似文献   

14.
In the open vehicle routing problem (OVRP), the objective is to minimise the number of vehicles and then minimise the total distance (or time) travelled. Each route starts at the depot and ends at a customer, visiting a number of customers, each once, en route, without returning to the depot. The demand of each customer must be completely fulfilled by a single vehicle. The total demand serviced by each vehicle must not exceed vehicle capacity. Additionally, in one variant of the problem, the travel time of each vehicle should not exceed an upper limit.  相似文献   

15.
This paper proposes a GRASP (Greedy Randomized Adaptive Search Procedure) algorithm for the multi-criteria minimum spanning tree problem, which is NP-hard. In this problem a vector of costs is defined for each edge of the graph and the problem is to find all Pareto optimal or efficient spanning trees (solutions). The algorithm is based on the optimization of different weighted utility functions. In each iteration, a weight vector is defined and a solution is built using a greedy randomized constructive procedure. The found solution is submitted to a local search trying to improve the value of the weighted utility function. We use a drop-and-add neighborhood where the spanning trees are represented by Prufer numbers. In order to find a variety of efficient solutions, we use different weight vectors, which are distributed uniformly on the Pareto frontier. The proposed algorithm is tested on problems with r=2 and 3 criteria. For non-complete graphs with n=10, 20 and 30 nodes, the performance of the algorithm is tested against a complete enumeration. For complete graphs with n=20, 30 and 50 nodes the performance of the algorithm is tested using two types of weighted utility functions. The algorithm is also compared with the multi-criteria version of the Kruskal’s algorithm, which generates supported efficient solutions. This work was funded by the Municipal Town Hall of Campos dos Goytacazes city. The used computer was acquired with resource of CNPq.  相似文献   

16.
This paper is concerned with the development of intelligent decision support methodologies for nurse rostering problems in large modern hospital environments. We present an approach which hybridises heuristic ordering with variable neighbourhood search. We show that the search can be extended and the solution quality can be significantly improved by the careful combination and repeated use of heuristic ordering, variable neighbourhood search and back-tracking. The amount of computational time that is allowed plays a significant role and we analyse and discuss this. The algorithms are evaluated against a commercial Genetic Algorithm on commercial data. We demonstrate that this methodology can significantly outperform the commercial algorithm. This paper is one of the few in the scientific nurse rostering literature which deal with commercial data and which compare against a commercially implemented algorithm.  相似文献   

17.
We develop ideas to enhance the performance of the variable neighborhood search (VNS) by guiding the search in the shaking phase, and by employing the Skewed strategy. For this purpose, Second Order algorithms and Skewed functions expressing structural differences are embedded in an efficient VNS proposed in the literature for the degree constrained minimum spanning tree problem. Given an undirected graph with weights associated with its edges, the degree constrained minimum spanning tree problem consists in finding a minimum spanning tree of the given graph, subject to constraints on node degrees. Computational experiments are conducted on the largest and hardest benchmark instances found in the literature to date. We report results showing that the VNS with the proposed strategies improved the best known solutions for all the hardest benchmark instances. Moreover, these new best solutions significantly reduced the gaps with respect to tight lower bounds reported in the literature.  相似文献   

18.
This paper is concerned with a special case of the generalized minimum spanning tree problem. The problem is defined on an undirected graph, where the vertex set is partitioned into clusters, and non-negative costs are associated with the edges. The problem is to find a tree of minimum cost containing at least one vertex in each cluster. We consider a geometric case of the problem where the graph is complete, all vertices are situated in the plane, and Euclidean distance defines the edge cost. We prove that the problem is strongly -hard even in the case of a special structure of the clustering called grid clustering. We construct an exact exponential time dynamic programming algorithm and, based on this dynamic programming algorithm, we develop a polynomial time approximation scheme for the problem with grid clustering.  相似文献   

19.
** Corresponding author. Email: mahdi{at}dcc.ufmg.br*** Email: martin{at}dcc.ufmg.br**** Email: mateus{at}dcc.ufmg.br***** Email: pardalos{at}ufl.edu Variable neighbourhood search (VNS) is a modern metaheuristicbased on systematic changes of the neighbourhood structure withina search to solve optimization problems. The aim of this paperis to propose and analyse a VNS algorithm to solve schedulingproblems with parallel machines and sequence-dependent setuptimes, which are of great importance on the industrial context.Three versions of a greedy randomized adaptive search procedurealgorithm are used to compare with the proposed VNS algorithmto highlight its advantages in terms of generality, qualityand speed for large instances.  相似文献   

20.
Motivated by optimization problems in sensor coverage, we formulate and study the Minimum-Area Spanning Tree (mast) problem: Given a set of n points in the plane, find a spanning tree of of minimum “area”, where the area of a spanning tree is the area of the union of the n−1 disks whose diameters are the edges in . We prove that the Euclidean minimum spanning tree of is a constant-factor approximation for mast. We then apply this result to obtain constant-factor approximations for the Minimum-Area Range Assignment (mara) problem, for the Minimum-Area Connected Disk Graph (macdg) problem, and for the Minimum-Area Tour (mat) problem. The first problem is a variant of the power assignment problem in radio networks, the second problem is a related natural problem, and the third problem is a variant of the traveling salesman problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号