首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results showing the dynamic response of a vertical long flexible cylinder vibrating at low mode numbers are presented in this paper. The model had an external diameter of 16 mm and a total length of 1.5 m giving an aspect ratio of about 94, with Reynolds numbers between 1200 and 12 000. Only the lower 40% of its length was exposed to the water current in the flume and applied top tensions varied from 15 to 110 N giving fundamental natural frequencies in the range from 3.0 to 7.1 Hz. Reduced velocities based on the fundamental natural frequency up to 16 were reached. The mass ratio was 1.8 and the combined mass–damping parameter about 0.05. Cross-flow and in-line amplitudes, xy trajectories and phase synchronisation, dominant frequencies and modal amplitudes are reported. Cross-flow amplitudes up to 0.7 diameters and in-line amplitudes over 0.2 were observed with dominant frequencies given by a Strouhal number of 0.16.  相似文献   

2.
Two-dimensional Unsteady Reynolds-Average Navier–Stokes equations with the Spalart–Allmaras turbulence model are used to simulate the flow induced motions of multiple circular cylinders with passive turbulence control (PTC) in steady uniform flow. Four configurations with 1, 2, 3, and 4 cylinders in tandem are simulated and studied at a series of Reynolds numbers in the range of 30 000<Re<120 000. Simulation results are verified by experimental data measured in the Marine Renewable Energy Laboratory. Good agreement was observed between the values of vorticity, amplitude ratio, and frequency ratio predicted by numerical simulations and experimental measurements. The amplitude and frequency response show the initial and upper branches in vortex induced vibration (VIV), transition from VIV to galloping, and galloping branch for all PTC-cylinders. The maximum amplitude of 2.9 diameters for the first cylinder is achieved at Re=104 356 in the numerical results. Compared with the first cylinder, the VIV initial branch starts at higher Re for the downstream cylinders due to the presence of the upstream cylinder(s). 2P and 2P+2S vortex patterns are observed at Re=62 049 and Re=90 254 for the single PTC-cylinder. Furthermore, the shed vortices of the downstream cylinders are strongly disrupted and modified by the vortices shed from the upstream one in the cases of multiple PTC-cylinders.  相似文献   

3.
One of the main problems in predicting the response of flexible structures subjected to vortex shedding is that a totally reliable model for the fluid loading does not exist. It is also very difficult to measure the distributed force exerted by the fluid along the length of a marine riser without disturbing the system in some way. The methodology described here uses experimental response data obtained in a test programme undertaken in the Delta Flume in Holland during May 2003, linked to a finite element method model (FEM) of the riser. The length-to-diameter ratio of the model used was around 470, the mass ratio (mass/displaced mass) was 3 and the Reynolds number varied between 2800 and 28 000. By using the response data as the input to the numerical model, the instantaneous distributed in-line and transverse forces acting on a flexible cylinder can be studied.  相似文献   

4.
The variation of natural convection heat transfer from an isothermal horizontal cylinder confined between two adiabatic walls of constant height is investigated by Mach-Zehnder interferometry technique. This paper focuses on the chimney effect due to the vertical position changes of cylinder (Y) located between two walls with a constant distance of W measuring 1.5 cylinder diameter. The cylinder’s local and average Nusselt numbers are determined for ratio of vertical position to its diameter ranging from Y/D = (0 to 10), and the Rayleigh number ranging from 3.5 × 103 to 1.4 × 104. There is an optimum distance between the walls in which the Nusselt number is maximum. Results are indicated with a single correlation which gives the average Nusselt number as a function of the ratio of vertical position to cylinder diameter and the Rayleigh number. The experimental data shows that there is an optimum vertical position for the cylinder at which the Nusselt number has a maximum value at each Rayleigh number. This optimal vertical position is derived from the correlation and is presented by an equation. The value of the optimum vertical position increases as the Rayleigh number increases.  相似文献   

5.
Experiments have been conducted to investigate the two-degree-of-freedom vortex-induced vibration (VIV) response of a rigid section of a curved circular cylinder with low mass-damping ratio. Two curved configurations, a concave and a convex, were tested regarding the direction of the flow, in addition to a straight cylinder that served as reference. Amplitude and frequency responses are presented versus reduced velocity for a Reynolds number range between 750 and 15 000. Results for the curved cylinders with concave and convex configurations revealed significantly lower vibration amplitudes when compared to the typical VIV response of a straight cylinder. However, the concave cylinder showed relatively higher amplitudes than the convex cylinder which were sustained beyond the typical synchronisation region. We believe this distinct behaviour between the convex and the concave configurations is related to the wake interference taking place in the lower half of the curvature due to perturbations generated in the horizontal section when it is positioned upstream. Particle-image velocimetry (PIV) measurements of the separated flow along the cylinder highlight the effect of curvature on vortex formation and excitation revealing a complex fluid–structure interaction mechanism.  相似文献   

6.
In the present study, flow control mechanism of single groove on a circular cylinder surface is presented experimentally using Particle image velocimetry (PIV). A square shaped groove is patterned longitudinally on the surface of the cylinder with a diameter of 50 mm. The flow characteristics are studied as a function of angular position of the groove from the forward stagnation point of the cylinder within 0°  θ  150°. In the current work, instantaneous and time-averaged flow data such as vorticity, ω streamline, Ψ streamwise, u/Uo and transverse, v/Uo velocity components, turbulent kinetic energy, TKE and RMS of streamwise, urms and transverse, vrms velocity components are utilized in order to present the results of quantitative analyses. Furthermore, Strouhal numbers are calculated using Karman vortex shedding frequency, fk obtained from single point spectral analysis. It is concluded that a critical angular position of the groove, θ = 80° is observed. The flow separation is controlled within 0°  θ < 80°. At θ = 80°, the flow separation starts to occur in the upstream direction. The instability within the shear layer is also induced on grooved side of the cylinder with frequencies different than Karman vortex shedding frequency, fk.  相似文献   

7.
We consider two-dimensional, inertia-free, flow of a constant-viscosity viscoelastic fluid obeying the FENE-CR equation past a cylinder placed symmetrically in a channel, with a blockage ratio of 0.5. Through numerical simulations we show that the flow becomes unsteady when the Deborah number (using the usual definition) is greater than De  1.3, for an extensibility parameter of the model of L2 = 144. The transition from steady to unsteady flow is characterised by a small pulsating recirculation zone of size approximately equal to 0.15 cylinder radius attached to the downstream face of the cylinder. There is also a rise in drag coefficient, which shows a sinusoidal variation with time. The results suggest a possible triggering mechanism leading to the steady three-dimensional Gortler-type vortical structures, which have been observed in experiments of the flow of a viscoelastic fluid around cylinders. The results reveal that the reason for failure of the search for steady numerical solutions at relatively high Deborah numbers is that the two-dimensional flow separates and eventually becomes unsteady. For a lower extensibility parameter, L2 = 100, a similar recirculation is formed given rise to a small standing eddy behind the cylinder which becomes unsteady and pulsates in time for Deborah numbers larger than De  4.0–4.5.  相似文献   

8.
The flow above the free ends of surface-mounted finite-height circular cylinders and square prisms was studied experimentally using particle image velocimetry (PIV). Cylinders and prisms with aspect ratios of AR = 9, 7, 5, and 3 were tested at a Reynolds number of Re = 4.2 × 104. The bodies were mounted normal to a ground plane and were partially immersed in a turbulent zero-pressure-gradient boundary layer, where the boundary layer thickness relative to the body width was δ/D = 1.6. PIV measurements were made above the free ends of the bodies in a vertical plane aligned with the flow centreline. The present PIV results provide insight into the effects of aspect ratio and body shape on the instantaneous flow field. The recirculation zone under the separated shear layer is larger for the square prism of AR = 3 compared to the more slender prism of AR = 9. Also, for a square prism with low aspect ratio (AR = 3), the influence of the reverse flow over the free end surface becomes more significant compared to that for a higher aspect ratio (AR = 9). For the circular cylinder, a cross-stream vortex forms within the recirculation zone. As the aspect ratio of the cylinder decreases, the reattachment point of the separated flow on the free end surface moves closer to the trailing edge. For both the square prism and circular cylinder cases, the instantaneous velocity vector field and associated in-plane vorticity field revealed small-scale structures mostly generated by the separated shear layer.  相似文献   

9.
The water entry of an inclined cylinder is firstly studied experimentally for low Froude number. The cylinder is 50 mm in diameter and 200 mm in length, with a moderate length to diameter ratio. As it is submerged below the water surface, the cavity is fully three-dimensional. Due to the rotation of the cylinder caused by the initial inclined impact, the cavity evolution is quite complicated and a new phenomenon is revealed. The cylinder moves along a curved trajectory in water, which greatly affects the evolution of the cavities. The cavity breaks up into two sub-cavities, and finally collapses because of hydrostatic pressure.  相似文献   

10.
End reflection phenomenon in a semi-infinitely long layered piezoelectric circular cylinder is constructed with modal data from a spectral decomposition of the differential operator governing its natural vibrations. These modal data consist of all propagating modes and edge vibrations and they constitute the basis for a wave function expansion of the reflection of waves arriving at the traction-free end of the cylinder. Without any other external stimulus, a passive reflection event occurs. This traction-free end condition is enforced at the Gaussian integration points over the end cross-section on the combination of incoming and reflected wave fields. Reflections due to monochromatic incoming axisymmetric (m = 0) and flexural (m = 1) waves are studied and two numerical examples are presented.For an incoming axisymmetric wave, there is a particular frequency that induces an end resonance, which is characterized by high (but finite) amplitudes of end displacements vis-a-vis those of neighboring (i.e., slightly different) frequencies. This phenomenon is illustrated in the two cylinder examples.It is possible to modify the passive reflection event by imposing some voltage distribution over the free end. For an oscillating end voltage that is out-of-phase with the incoming wave, it is possible to extract electrical energy from it, i.e., energy harvesting. Examples of such an oscillating voltage with a particular radial distribution are given, that illustrate the amount of extracted energy as a function of the frequency of the incident monochromatic wave.  相似文献   

11.
The heat transfer and the pressure drop characteristics of laminar flow of viscous oil (195 < Pr < 525) through rectangular and square ducts with internal transverse rib turbulators on two opposite surfaces of the ducts and with wire coil inserts have been studied experimentally. Circular duct has also been used. The transverse ribs in combination with wire coil inserts have been found to perform better than either ribs or wire coil inserts acting alone. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow friction and thermal characteristics are governed by duct aspect ratio, coil helix angle and wire diameter of the coil, rib height and rib spacing, Reynolds number and Prandtl number. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of constant pumping power, up to fifty per cent heat duty increase occurs for the combined ribs and wire coil inserts case compared to the individual ribs and wire coil inserts cases in the measured experimental parameters space. On the constant heat duty basis, the pumping power has been reduced up to forty per cent for the combined enhancement geometry than the individual enhancement geometries.  相似文献   

12.
The flow above the free end of a surface-mounted finite-height cylinder was studied in a low-speed wind tunnel using particle image velocimetry (PIV). Velocity measurements were made in vertical and horizontal measurement planes above the free end of finite cylinders of aspect ratios AR = 9, 7, 5 and 3, at a Reynolds number of Re = 4.2 × 104. The relative thickness of the boundary layer on the ground plane was δ/D = 1.7. Flow separating from the leading edge formed a prominent recirculation zone on the free-end surface. The legs of the mean arch vortex contained within the recirculation zone terminate on the free-end surface on either side of the centreline. Separated flow from the leading edge attaches onto the upper surface of the cylinder along a prominent attachment line. Local separation downstream of the leading edge is also induced by the reverse flow and arch vortex circulation within the recirculation zone. As the cylinder aspect ratio is lowered from AR = 9 to AR = 3, the thickness of the recirculation zone increases, the arch vortex centre moves downstream and higher above the free-end surface, the attachment position moves downstream, and the termination points of the arch vortex move upstream. A lowering of the aspect ratio therefore results in accentuated curvature of the arch vortex line. Changes in aspect ratio also influence the vorticity generation in the near-wake region and the shape of the attachment line.  相似文献   

13.
This paper presents some results of URANS study of flow and heat transfer in a matrix of wall-bounded 8 × 8 round pins, mimicking internal cooling passage of gas-turbine blades. The focus is on flow unsteadiness, its role in heat transfer and the capabilities of RANS models to reproduce these features in a set-up of industrial relevance. The results for two Reynolds numbers, 10 000 and 30 000, are compared with the available experiments and LES. It is shown that the elliptic-relaxation eddy-viscosity model, ζ-f captures vortex shedding and the consequent gross effects on the flow development. However, a closer look at flow details reveals discrepancies, especially around the first three pin rows, where the unsteadiness reproduced by URANS shows much weaker amplitudes as compared with LES. Only further downstream the succession of forcing from a series of pins produced unsteadiness akin to those captured by LES. The comparison suggests that smaller structures undetected by URANS need to be resolved to capture properly the separation and wake characteristics of each row. At Re = 10 000, the average endwall Nusselt number agrees well with the LES, both being about 20% lower than in the experiment. For Re = 30 000 the URANS Nusselt is within 10% of the experimental value.  相似文献   

14.
The effect of a cylindrical bluff body on the interface characteristics of stratified two-phase, oil-water, pipe flows is experimentally investigated with high speed Particle Image Velocimetry (PIV). The motivation was to study the feasibility of flow pattern map actuation by using a transverse cylinder immersed in water in the stratified pattern, and particularly the transition from separated to dispersed flows. The cylinder has a diameter of 5 mm and is located at 6.75 mm from the bottom of the pipe in a 37 mm ID acrylic test section. Velocity profiles were obtained in the middle plane of the pipe. For reference, single phase flows were also investigated for Reynolds numbers from 1550 to 3488. It was found that the flow behind the cylinder was similar to the two dimensional cases, while the presence of the lower pipe wall diverted the vorticity layers towards the top. In two-phase flows, the Froude number (from 1.4 to 1.8) and the depth of the cylinder submergence below the interface affected the generation of waves. For high Froude numbers and low depths of submergence the counter rotating von Karman vortices generated by the cylinder interacted with the interface. In this case, the vorticity clusters from the top of the cylinder were seen to attach at the wave crests. At high depths of submergence, a jet like flow appeared between the top of the cylinder and the interface. High speed imaging revealed that the presence of the cylinder reduced to lower mixture velocities the transition from separated to dual continuous flows where drops of one phase appear into the other.  相似文献   

15.
The hydrodynamics of vertical falling films in a large-scale pilot unit are investigated experimentally and numerically. We study a broad range of operating conditions with Kapitza and Reynolds numbers ranging from Ka = 191–3394 and Re 24–251, respectively. We compare film thickness measurements, conducted by a laser triangulation scanner, with those obtained by directly solving the full Navier–Stokes equations in two dimensions and using the volume of fluid (VOF) numerical framework. We examine the evolution of the liquid film at multiple locations over a vertical distance of 4.5 m. In both our experiments and simulations we identify a natural wave frequency of the system of approximately 10 Hz. We investigate the formulation of the inlet boundary condition and its effects on wave formation. We show how potentially erroneous conclusions can be made if the simulated domain is shorter than 1000 film thicknesses, by mistaking the forced inlet frequency for the natural wave frequency. We recommend an inlet disturbance consisting of a multitude of frequencies to achieve the natural wave frequency over relatively short streamwise distances.  相似文献   

16.
In this paper, we studied the convective heat transfer from a stream-wise oscillating circular cylinder. Two dimensional numerical simulations are conducted at Re = 100–200, A = 0.1–0.4 and F = fo/fs = 0.2–3.0 with the aid of the lattice Boltzmann method. In particular, detailed attentions are paid on the extensive numerical results elucidating the influence of oscillation frequency, oscillation amplitude and Reynolds number on the time-average and RMS value of the Nusselt number. Over the ranges of conditions considered herein, the heat transfer characteristics are observed to be influenced in an intricate manner by the value of the oscillation frequency (F), oscillation amplitude (A) and Reynolds number (Re). Firstly, the heat transfer is enhanced when the cylinder oscillates stream-wise with small amplitude and low frequency, while it will be reduced by large amplitude and high frequency. Secondly, the average Nusselt number (Nu (ave)) decreases against the increasing value of oscillation frequency, while the RMS value of the Nusselt number, Nu (RMS), displays an opposite trend. Third, we obtained a similar frequency effect on the heat transfer over the range of Reynolds numbers investigated in this paper. In addition, detailed analyses on phase portraits, energy spectrum are also made.  相似文献   

17.
This paper derives a new three-dimensional (3-D) analytical solution for the indirect tensile tests standardized by ISRM (International Society for Rock Mechanics) for testing rocks, and by ASTM (American Society for Testing and Materials) for testing concretes. The present solution for solid circular cylinders of finite length can be considered as a 3-D counterpart of the classical two dimensional (2-D) solutions by Hertz in 1883 and by Hondros in 1959. The contacts between the two steel diametral loading platens and the curved surfaces of a cylindrical specimen of length H and diameter D are modeled as circular-to-circular Hertz contact and straight-to-circular Hertz contact for ISRM and ASTM standards respectively. The equilibrium equations of the linear elastic circular cylinder of finite length are first uncoupled by using displacement functions, which are then expressed in infinite series of some combinations of Bessel functions, hyperbolic functions, and trigonometric functions. The applied tractions are expanded in Fourier–Bessel series and boundary conditions are used to yield a system of simultaneous equations. For typical rock cylinders of 54 mm diameter subjected to ISRM indirect tensile tests, the contact width is in the order of 2 mm (or a contact angle of 4°) whereas for typical asphalt cylinders of 101.6 mm diameter subjected to ASTM indirect tensile tests the contact width is about 10 mm (or a contact angle of 12°). For such contact conditions, 50 terms in both Fourier and Fourier–Bessel series expansions are found sufficient in yielding converged solutions. The maximum hoop stress is always observed within the central portion on a circular section close to the flat end surfaces. The difference in the maximum hoop stress between the 2-D Hondros solution and the present 3-D solution increases with the aspect ratio H/D as well as Poisson’s ratio ν. When contact friction is neglected, the effect of loading platen stiffness on tensile stress in cylinders is found negligible. For the aspect ratio of H/D = 0.5 recommended by ISRM and ASTM, the error in tensile strength may be up to 15% for both typical rocks and asphalts, whereas for longer cylinders with H/D up to 2 the error ranges from 15% for highly compressible materials, and to 60% for nearly incompressible materials. The difference in compressive radial stress between the 2-D Hertz solution or 2-D Hondros solution and the present 3-D solution also increases with Poisson’s ratio and aspect ratio H/D. In summary, the 2-D solution, in general, underestimates the maximum tensile stress and cannot predict the location of the maximum hoop stress which typically locates close to the end surfaces of the cylinder.  相似文献   

18.
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38 × 105 based on the jet diameter. Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena, including flow structures, turbulent characters and frequency behaviors, have been studied. The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures, vortical structures and jet shear layers. The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio. Turbulent characters are clarified to be closely related to the flow structures. The jet penetration increases with the increase of the momentum ratio. Moreover, the dominant frequencies of the flow structures are obtained using spectral analysis. The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow.  相似文献   

19.
In this work, the continuity and momentum equations have been solved numerically to investigate the flow of power-law fluids over a rotating cylinder. In particular, consideration has been given to the prediction of drag and lift coefficients as functions of the pertinent governing dimensionless parameters, namely, power-law index (1  n  0.2), dimensionless rotational velocity (0  α  6) and the Reynolds number (0.1  Re  40). Over the range of Reynolds number, the flow is known to be steady. Detailed streamline and vorticity contours adjacent to the rotating cylinder and surface pressure profiles provide further insights into the nature of flow. Finally, the paper is concluded by comparing the present numerical results with the scant experimental data on velocity profiles in the vicinity of a rotating cylinder available in the literature. The correspondence is seen to be excellent for Newtonian and inelastic fluids.  相似文献   

20.
A detailed experimental study is performed on the separated flow structures around a low aspect-ratio circular cylinder (pin-fin) in a practical configuration of liquid cooling channel. Distinctive features of the present arrangement are the confinement of the cylinder at both ends, water flow at low Reynolds numbers (Re = 800, 1800, 2800), very high core flow turbulence and undeveloped boundary layers at the position of the obstacle. The horseshoe vortex system at the junctions between the cylinder and the confining walls and the near wake region behind the obstacle are deeply investigated by means of Particle Image Velocimetry (PIV). Upstream of the cylinder, the horseshoe vortex system turns out to be perturbed by vorticity bursts from the incoming boundary layers, leading to aperiodical vortex oscillations at Re = 800 or to break-away and secondary vorticity eruptions at the higher Reynolds numbers. The flow structures in the near wake show a complex three-dimensional behaviour associated with a peculiar mechanism of spanwise mass transport. High levels of free-stream turbulence trigger an early instabilization of the shear layers and strong Bloor–Gerrard vortices are observed even at Re = 800. Coalescence of these vortices and intense spanwise flow inhibit the alternate primary vortex shedding for time periods whose length and frequency increase as the Reynolds number is reduced. The inhibition of alternate vortex shedding for long time periods is finally related to the very large wake characteristic lengths and to the low velocity fluctuations observed especially at the lowest Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号