首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The pattern of shock wave reflection over a wedge is, in general, either a regular reflection or a Mach reflection, depending on wedge angles, shock wave Mach numbers, and specific heat ratios of gases. However, regular and Mach reflections can coexist, in particular, over a three-dimensional wedge surface, whose inclination angles locally vary normal to the direction of shock propagation. This paper reports a result of diffuse double exposure holographic interferometric observations of shock wave reflections over a skewed wedge surface placed in a 100 × 180 mm shock tube. The wedge consists of a straight generating line whose local inclination angle varies continuously from 30° to 60°. Painting its surface with fluorescent spray paint and irradiating its surface with a collimated object beam at a time interval of a few microseconds, we succeeded in visualizing three-dimensional shock reflection over the skewed wedge surface. Experiments were performed at shock Mach numbers, 1.55, 2.02, and 2.53 in air. From reconstructed holographic images, we estimated critical transition angles at these shock wave Mach numbers and found that these were very close to those over straight wedges. This is attributable to the flow three-dimensionality.   相似文献   

2.
The various oblique shock wave reflection patterns generated by a moving incident shock on a planar wedge using an ideal quantum gas model are numerically studied using a novel high resolution quantum kinetic flux splitting scheme. With different incident shock Mach numbers and wedge angles as flow parameters, four different types of reflection patterns, namely, the regular reflection, simple Mach reflection, complex Mach reflection and the double Mach reflection as in the classical gas can be classified and observed. Both Bose–Einstein and Fermi–Dirac gases are considered.   相似文献   

3.
Three-dimensional effects on regular reflection in steady supersonic flows   总被引:1,自引:0,他引:1  
The reflection of shock waves between two symmetrical wedges is investigated for the case of three-dimensional flows. Oblique shadowgraphs at various optical angles of yaw and pitch were used to examine the nature of fully three-dimensional flows, with wedge aspect ratios as low as 0.25 being considered. These images were used to construct surface models of the overall flow field for various reflection patterns and aspect ratios, which provides a visual indication of the flow field shape. For a Mach number of 3.1, and suitable wedge angles, the flow field with regular reflection on the tunnel centreline and Mach reflection further out is examined. The point of transition from regular reflection to the peripheral Mach surfaces is identified for various wedge angles and aspect ratios. It is shown that the transition points move outwards from the central plane as the aspect ratio decreases. This shows that three-dimensional flows favor regular reflection, because of the increasing curvature of the incident shock as the wedge becomes narrower, causing a decrease in the local angle of incidence. The height of the Mach stem is shown to be highly dependent on the geometry of the test wedge models. The Mach stem height decreases with aspect ratio due to the three-dimensional relieving effect, where the increase in lateral flow relieves the pressure over the surfaces of the wedges. Experimental evidence of the existence of the strong oblique shock solution in steady flows is presented.Received: 7 July 2003, Revised: 20 October 2003, Accepted: 6 November 2003, Published online: 10 February 2004PACS: 47.40.Nm Correspondence to: B.W. Skews  相似文献   

4.
A preliminary experimental investigation of the reflection phenomenon of a planar shock wave over a water wedge is reported. The experimental investigation was conducted using a specially designed shock tube which was capable of being tilted from a horizontal situation to a vertical one in an accuracy of 0.1°. The four well-known types of pseudo-steady oblique shock wave reflections were observed. In addition, it has been found that the actual wedge angles at which the regular reflection transitions to a Mach reflection differ from those measured over a solid wedge.  相似文献   

5.
Wave dynamic processes in cellular detonation reflection from wedges   总被引:4,自引:0,他引:4  
When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H 2/O 2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes. The English text was polished by Yumming Chen.  相似文献   

6.
The Mach reflection of cellular detonation waves on a wedge is investigated numerically in an attempt to elucidate the effect of cellular instabilities on Mach reflection, the dependence of self-similarity on the thickness of a detonation wave, and the initial development of the Mach stem near the wedge apex. A two-step chain-branching reaction model is used to give a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. A sufficiently large distance of travel of the Mach stem is computed to observe the asymptotic behavior in the far field. Depending on the scale at which the Mach reflection process occurs, it is found that the Mach reflection of a cellular detonation behaves essentially in the same way as a planar ZND detonation wave. The cellular instabilities, however, cause the triple-point trajectory to fluctuate. The fluctuations are due to interactions of the triple point of the Mach stem with the transverse waves of cellular instabilities. In the vicinity of the wedge apex, the Mach reflection is found to be self-similar and corresponds to that of a shock wave of the same strength, since the Mach stem is highly overdriven initially. In the far field, the triple-point trajectory approaches a straight line, indicating that the Mach reflection becomes self-similar asymptotically. The distance of the approach to self-similarity is found to decrease rapidly with decreasing thickness of the detonation front.  相似文献   

7.
P. Xie  Z. Y. Han  K. Takayama 《Shock Waves》2005,14(1-2):29-36
In the Mach reflection of plane shock on a concave double wedge, after two triple points collide with each other, the wave pattern is usually complicated. In this paper, firstly, a shock dynamic approach is used for studying this problem. In this approach, the method of shock-shock polar is used for better understanding the pattern of disturbance propagation. A downward-traveling shock-shock disturbance on the Mach stem is predicted theoretically. Secondly, based on the idea of shock dynamic approach, a gas dynamic model is built for studying the same problem. A similar result is obtained and the formation of the downward-traveling triple point is analyzed. This downward-traveling disturbance propagates and reflects between the upward-traveling shock-shock locus and the wall surface, causing the Mach number of Mach stem to increase and making the wave configuration approach to the one in the Mach reflection on a single wedge.Received: 19 April 2004, Accepted: 2 December 2004, Published online: 16 March 2005[/PUBLISHED]Correspondence to: P. Xie, Z.Y. Han  相似文献   

8.
When a weak shock wave reflects from wedges its reflection pattern does not appear to be a simple Mach reflection. This reflection pattern is known to be von Neumann Mach reflection in which a Mach stem can not necessarily be straight. In this paper the local change of the Mach stem curvature was experimentally and numerically investigated. A distinct triple point, at which the curvature becomes infinite as appears in a simple Mach reflection, was not observed but the Mach stem curvature became a maximum between foot of the Mach stem and a point, P1, at which an incident shock met with a reflected shock. Maximum curvature point P2 and P1 do not coincide for small wedge angles and tend to merge over a certain wedge angle. Experimental results agreed with numerical results. The trajectory angle of P2 was found to be expressed well by Whitham's shock-shock angle.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

9.
The assumption that the Mach reflection which is formed over the second surface of a double wedge with angles w 1 and kw/2 approaches asymptotically the Mach reflection which would have been obtained by an identical incident shock wave over a single wedge with an angle w = w 2 was verified experimentally. The verification of this assumption supports the shock polar analysis suggested by Ben-Dor et al. (1987) for the study of the reflection process of a planar shock wave over a double wedge. Measurements of the rate of approach to the asymptotic value are also provided.  相似文献   

10.
In this article, the interaction of a normal shock with a yawed wedge moving at supersonic speed has been considered. The vorticity distribution of a particle over the diffracted shock wave for various combinations of yawed angles, Mach number of the shock wave and Mach number of the moving wedge have been obtained. Further triple point angle χ in Mach reflection has been calculated for the various parameters.   相似文献   

11.
B. W. Skews 《Shock Waves》1994,4(3):145-154
A study to determine the general gas dynamic behaviour associated with the impact of a shock wave on a porous wedge has been undertaken. A number of interesting features are noted. The pattern of wave reflection is shown to be significantly affected by the inflow of gas into the wedge. This has the effect of reducing the triple point trajectory angle for cases of Mach reflection and for strongly reducing the reflection angle in regular reflection. The permeability of the wedge has a significant effect on the strength of the reflected wave and in some cases this wave can be attenuated to the extent that it is almost eradicated. Pressure measurements taken under the wedge are characterized by oscillations which are of similar shape, for a given wedge, over a range of shock wave Mach numbers. It is shown that the wave transmitted into the wedge is attenuated to varying degrees depending on the material properties, and that for weak incident waves the mean propagation velocity can be less than the sound speed in the pore fluid. Photographs taken using a specially constructed wedge which allows the transmitted wave to be visualised, show that the transmitted wave is nearly plane.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

12.
B.W. Skews 《Shock Waves》1997,7(6):373-383
The transverse wave patterns and flow fields around double wedge experimental arrangements in supersonic facilities for the study of transition from regular to Mach reflection are examined. Guidelines for the minimum inlet aspect ratio to be used are determined in order to ensure that the reflection point is protected from side influences. A preliminary visualization study of the reflection of the wave systems from two wedges of small aspect ratio, has shown the appearance of a new feature in the transition from regular to Mach reflection, that of a dynamic flow distortion, which is presumed to arise due to three-dimensional adjustments in pressure. It occurs in the vicinity of the 2-dimensional mechanical equilibrium point. Oblique shadowgraph images are used to help visualize the flow system. Received 10 December 1996 / Accepted 24 March 1997  相似文献   

13.
D. Q. Xu  H. Honma 《Shock Waves》1991,1(1):43-49
A numerical simulation was performed for the process of formation of single Mach reflection on a wedge by solving a BGK type kinetic equation for the reduced distribution function with a finite difference scheme. The calculations were carried out for a shock Mach number 2.75 and wedge angle 25° in a monatomic gas, which corresponds to the conditions of single Mach reflection in the classical von Neumann theory. The calculations were performed for both diffuse and specular reflection of molecules at the wall surface. It is concluded that the diffuse reflection of molecules at the wall surface or the existence of the viscous or thermal layer is an essential factor for a nonstationary process at the initial stage of Mach reflection. Furthermore, the numerical results for diffuse reflection are found to simulate the experimental results very well, such as a transient process from regular reflection to Mach reflection along with shock propagation.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

14.
杨旸  滕宏辉  王春  姜宗林 《力学学报》2012,44(2):205-212
采用基于MUSCL-Hancock插值的有限体积方法, 在非结构自适应网格上求解三维Euler方程, 研究了非定常激波在三维垂直双楔面上的反射现象. 研究结果表明, 由于三维效应的影响, 通过二维非定常激波反射理论预测的三维马赫反射区域范围存在着一定的局限, 在该区域范围内出现了一种非典型的三维突起结构, 即第二类三维马赫干. 另外, 对于不同的激波马赫数和楔面倾角组合, 非定常激波在三维双楔面上会形成具有四波结构的三维马赫反射或具有三波结构的三维规则反射.   相似文献   

15.
C. J. Wang  C. M. Guo 《Shock Waves》2014,24(5):467-477
The two-dimensional, time-dependent and reactive Navier–Stokes equations were solved to obtain an insight into Mach reflection of gaseous detonation in a stoichiometric hydrogen-oxygen mixture diluted by 25 % argon. This mixture generates a mode-7 detonation wave under an initial pressure of 8.00 kPa. Chemical kinetics was simulated by an eight-species, forty-eight-reaction mechanism. It was found that a Mach reflection mode always occurs for a planar detonation wave or planar air shock wave sweeping over wedges with apex angles ranging from \(5^\circ \) to \(50^\circ \) . However, for cellular detonation waves, regular reflection always occurs first, which then transforms into Mach reflection. This phenomenon is more evident for detonations ignited under low initial pressure. Low initial pressure may lead to a curved wave front, that determines the reflection mode. The stochastic nature of boundary shape and transition distance, during deflagration-to-detonation transition, leads to relative disorder of detonation cell location and cell shape. Consequently, when a detonation wave hits the wedge apex, there appears a stochastic variation of triple point origin and variation of the angle between the triple point trajectory and the wedge surface. As the wedge apex angle increases, the distance between the triple point trajectory origin and the wedge apex increases, and the angle between the triple point trajectory and the wedge surface decreases exponentially.  相似文献   

16.
Classification of various types of the reflections of a shock wave over a straight wedge is proposed. The idea about entire reflection phenomenon as a result of interaction of two processes—the shock wave reflection process and the flow deflection process—serves as a basis for the classification. To recognize the types of reflection, changes in the shapes of the reflected wave, Mach stem, and contact surface (slipstream) are taken into account. The boundaries and domains of existence for various types of reflection configuration are reported. New terms for some types of reflection are proposed. The domain of irregular non-Mach reflection is analyzed carefully. It is shown that the von Neumann reflection pattern can result from not only the weak shock reflection but also the strong shock reflection over thin wedges. Shadowgraph images of different types of irregular reflection that illustrate the suggested classification are presented. Emphasis is placed on near-wall behavior of the contact discontinuity in the Mach configuration.  相似文献   

17.
气相爆轰波在障碍物上Mach反射的实验验证   总被引:3,自引:0,他引:3  
郭长铭  张德良  谢巍 《实验力学》2000,15(3):298-305
本文公布了气相爆轰波沿收缩管道传播时发生Mach反射的实验证据。在爆轰波通过的管道中安装不同楔角的楔块,形成管道的收缩。爆轰波在通过楔块时会发生Mach反射。利用烟熏玻璃片记录到了爆轰波Mach反射时形成的三波点迹线及其两侧胞格尺寸和密度的变化。据我们掌握的资料,这是首次用胞格结构变化的记录证实,气相爆轰波与无化学反应的空气中的冲击波一样,在一定的入射条件下会发生Mach反射。这一实验结果可使我们更深入了解爆轰波的本质,也为数值模拟气相爆轰波在障碍物上Mach反射现象提供了可对比的依据。  相似文献   

18.
爆轰波在楔面上反射数值分析   总被引:8,自引:0,他引:8  
应用基元反应模型和频散可控耗散格式(DCD)对氢氧爆轰波在楔面反射进行了数值模拟,计算中氢氧混合物的化学反应采用了8种组分20个反应方程式,在处理化学反应引起的刚性问题时采用了时间算子分裂的方法,模拟了爆轰波在楔面反射由马赫反射向规则反射转变的过程,得到了反射转变临界角,同时考虑了初始压力和组分的影响,并和实验及理论分析结果进行了比较,结果是令人满意的。  相似文献   

19.
Analytical consideration of Mach reflections over cones using the ray-shock theory showed that they differ from those of the two-dimensional Mach reflection over wedges. Conical configurations include both self-similar and non-self-similar cases. However, even when self-similar, the conical configurations exhibit triple-point locus trajectory angles with values which, for any given reflection angle, differ from those of self-similar, wedge cases. Additionally, within the range of possible conical configurations, different values of self-similar triple-point locus angles exist for any given reflection angle depending on the geometry of the particular reflection process. While the ray-shock theory, as discussed in a previous paper on this research, provides a useful guide and a means of readily identifying these variations, verification using both shock tube and numerical simulations is required and is now available. Results of experimentation for both self-similar and non-self-similar axisym metric cases using these techniques are reported here and comparisons are made with the previous analysis. These support the calculations of the ray-shock theory over much of the reflection angle, Mach number range as well as highlighting some limitations of the theory. Received 15 October 1996 / Accepted 14 April 1997  相似文献   

20.
A new resolution-enhancing technique called derivative artificial compression method is developed with multi-dimensional extension. The method is constructed via applying high-resolution difference schemes on derivative equations of conservation laws. In this way, one could overcome the defect of accuracy decay at extreme points that has plagued almost all high-resolution schemes. The new method has high resolution, low dissipation and low diffusion properties, and could enhance the resolution (of numerical solution) both at discontinuities and at extreme points. Numerical experiments are implemented using initial value problems of single conservation law, one-dimensional shock-tube problem, two-dimensional Riemann problems, double Mach reflection problem, and a shock reflection from a wedge. Resolutions of discontinuities, extremes and fine structures are compared between the original TVD scheme, TVD scheme with artificial compression method and TVD scheme with derivative artificial compression method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号