首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two‐electron reductive carbonylation of the uranium(VI) nitride [U(TrenTIPS)(N)] ( 2 , TrenTIPS=N(CH2CH2NSiiPr3)3) with CO gave the uranium(IV) cyanate [U(TrenTIPS)(NCO)] ( 3 ). KC8 reduction of 3 resulted in cyanate dissociation to give [U(TrenTIPS)] ( 4 ) and KNCO, or cyanate retention in [U(TrenTIPS)(NCO)][K(B15C5)2] ( 5 , B15C5=benzo‐15‐crown‐5 ether) with B15C5. Complexes 5 and 4 and KNCO were also prepared from CO and the uranium(V) nitride [{U(TrenTIPS)(N)K}2] ( 6 ), with or without B15C5, respectively. Complex 5 can be prepared directly from CO and [U(TrenTIPS)(N)][K(B15C5)2] ( 7 ). Notably, 7 reacts with CO much faster than 2 . This unprecedented f‐block reactivity was modeled theoretically, revealing nucleophilic attack of the π* orbital of CO by the nitride with activation energy barriers of 24.7 and 11.3 kcal mol?1 for uranium(VI) and uranium(V), respectively. A remarkably simple two‐step, two‐electron cycle for the conversion of azide to nitride to cyanate using 4 , NaN3 and CO is presented.  相似文献   

2.
Reaction of [U(TrenTIPS)(PH2)] ( 1 , TrenTIPS=N(CH2CH2NSiPri3)3) with C6H5CH2K and [U(TrenTIPS)(THF)][BPh4] ( 2 ) afforded a rare diuranium parent phosphinidiide complex [{U(TrenTIPS)}2(μ‐PH)] ( 3 ). Treatment of 3 with C6H5CH2K and two equivalents of benzo‐15‐crown‐5 ether (B15C5) gave the diuranium μ‐phosphido complex [{U(TrenTIPS)}2(μ‐P)][K(B15C5)2] ( 4 ). Alternatively, reaction of [U(TrenTIPS)(PH)][Na(12C4)2] ( 5 , 12C4=12‐crown‐4 ether) with [U{N(CH2CH2NSiMe2But)2CH2CH2NSi(Me)(CH2)(But)}] ( 6 ) produced the diuranium μ‐phosphido complex [{U(TrenTIPS)}(μ‐P){U(TrenDMBS)}][Na(12C4)2] [ 7 , TrenDMBS=N(CH2CH2NSiMe2But)3]. Compounds 4 and 7 are unprecedented examples of uranium phosphido complexes outside of matrix isolation studies, and they rapidly decompose in solution underscoring the paucity of uranium phosphido complexes. Interestingly, 4 and 7 feature symmetric and asymmetric UPU cores, respectively, reflecting their differing steric profiles.  相似文献   

3.
Reaction of [U(TrenTIPS)(THF)][BPh4] ( 1 ; TrenTIPS=N{CH2CH2NSi(iPr)3}3) with NaPH2 afforded the novel f‐block terminal parent phosphide complex [U(TrenTIPS)(PH2)] ( 2 ; U–P=2.883(2) Å). Treatment of 2 with one equivalent of KCH2C6H5 and two equivalents of benzo‐15‐crown‐5 ether (B15C5) afforded the unprecedented metal‐stabilized terminal parent phosphinidene complex [U(TrenTIPS)(PH)][K(B15C5)2] ( 4 ; U?P=2.613(2) Å). DFT calculations reveal a polarized‐covalent U?P bond with a Mayer bond order of 1.92.  相似文献   

4.
Reaction of [U(TrenTIPS)] [ 1 , TrenTIPS=N(CH2CH2NSiiPr3)3] with 0.25 equivalents of P4 reproducibly affords the unprecedented actinide inverted sandwich cyclo‐P5 complex [{U(TrenTIPS)}2(μ‐η55‐cyclo‐P5)] ( 2 ). All prior examples of cyclo‐P5 are stabilized by d‐block metals, so 2 shows that cyclo‐P5 does not require d‐block ions to be prepared. Although cyclo‐P5 is isolobal to cyclopentadienyl, which usually bonds to metals via σ‐ and π‐interactions with minimal δ‐bonding, theoretical calculations suggest the principal bonding in the U(P5)U unit is polarized δ‐bonding. Surprisingly, the characterization data are overall consistent with charge transfer from uranium to the cyclo‐P5 unit to give a cyclo‐P5 charge state that approximates to a dianionic formulation. This is ascribed to the larger size and superior acceptor character of cyclo‐P5 compared to cyclopentadienyl, the strongly reducing nature of uranium(III), and the availability of uranium δ‐symmetry 5f orbitals.  相似文献   

5.
Little is known about the chemistry of the 2-arsaethynolate anion, but to date it has exclusively undergone fragmentation reactions when reduced. Herein, we report the synthesis of [U(TrenTIPS)(OCAs)] ( 2 , TrenTIPS=N(CH2CH2NSiiPr3)3), which is the first isolable actinide-2-arsaethynolate linkage. UV-photolysis of 2 results in decarbonylation, but the putative [U(TrenTIPS)(As)] product was not isolated and instead only [{U(TrenTIPS)}2(μ-η22-As2H2)] ( 3 ) was formed. In contrast, reduction of 2 with [U(TrenTIPS)] gave the mixed-valence arsenido [{U(TrenTIPS)}2(μ-As)] ( 4 ) in very low yield. Complex 4 is unstable which precluded full characterisation, but these photolytic and reductive reactions testify to the tendency of 2-arsaethynolate to fragment with CO release and As transfer. However, addition of 2 to an electride mixture of potassium-graphite and 2,2,2-cryptand gives [{U(TrenTIPS)}2{μ-η2(OAs):η2(CAs)-OCAs}][K(2,2,2-cryptand)] ( 5 ). The coordination mode of the trapped 2-arsaethynolate in 5 is unique, and derives from a new highly reduced and bent form of this ligand with the most acute O-C-As angle in any complex to date (O-C-As ≈128°). The trapping rather than fragmentation of this highly reduced O-C-As unit is unprecedented, and quantum chemical calculations reveal that reduction confers donor–acceptor character to the O-C-As unit.  相似文献   

6.
The chemistry of 2‐phosphaethynolate is burgeoning, but there remains much to learn about this ligand, for example its reduction chemistry is scarce as this promotes P‐C‐O fragmentations or couplings. Here, we report that reduction of [U(TrenTIPS)(OCP)] (TrenTIPS=N(CH2CH2NSiPri3)3) with KC8/2,2,2‐cryptand gives [{U(TrenTIPS)}2{μ‐η2(OP):η2(CP)‐OCP}][K(2,2,2‐cryptand)]. The coordination mode of this trapped 2‐phosphaethynolate is unique, and derives from an unprecedented highly reduced and highly bent form of this ligand with the most acute P‐C‐O angle in any complex to date (P‐C‐O ? ≈127°). The characterisation data support a mixed‐valence diuranium(III/IV) formulation, where backbonding from uranium gives a highly reduced form of the P‐C‐O unit that is perhaps best described as a uranium‐stabilised OCP2?. radical dianion. Quantum chemical calculations reveal that this gives unprecedented carbene character to the P‐C‐O unit, which engages in a weak donor–acceptor interaction with one of the uranium ions.  相似文献   

7.
The synthesis and characterisation is presented of the compounds [An(TrenDMBS){Pn(SiMe3)2}] and [An(TrenTIPS){Pn(SiMe3)2}] [TrenDMBS=N(CH2CH2NSiMe2But)3, An=U, Pn=P, As, Sb, Bi; An=Th, Pn=P, As; TrenTIPS=N(CH2CH2NSiPri3)3, An=U, Pn=P, As, Sb; An=Th, Pn=P, As, Sb]. The U−Sb and Th−Sb moieties are unprecedented examples of any kind of An−Sb molecular bond, and the U−Bi bond is the first two‐centre‐two‐electron (2c–2e) one. The Th−Bi combination was too unstable to isolate, underscoring the fragility of these linkages. However, the U−Bi complex is the heaviest 2c–2e pairing of two elements involving an actinide on a macroscopic scale under ambient conditions, and this is exceeded only by An−An pairings prepared under cryogenic matrix isolation conditions. Thermolysis and photolysis experiments suggest that the U−Pn bonds degrade by homolytic bond cleavage, whereas the more redox‐robust thorium compounds engage in an acid–base/dehydrocoupling route.  相似文献   

8.
The synthesis and characterisation is presented of the compounds [An(TrenDMBS){Pn(SiMe3)2}] and [An(TrenTIPS){Pn(SiMe3)2}] [TrenDMBS=N(CH2CH2NSiMe2But)3, An=U, Pn=P, As, Sb, Bi; An=Th, Pn=P, As; TrenTIPS=N(CH2CH2NSiPri3)3, An=U, Pn=P, As, Sb; An=Th, Pn=P, As, Sb]. The U?Sb and Th?Sb moieties are unprecedented examples of any kind of An?Sb molecular bond, and the U?Bi bond is the first two‐centre‐two‐electron (2c–2e) one. The Th?Bi combination was too unstable to isolate, underscoring the fragility of these linkages. However, the U?Bi complex is the heaviest 2c–2e pairing of two elements involving an actinide on a macroscopic scale under ambient conditions, and this is exceeded only by An?An pairings prepared under cryogenic matrix isolation conditions. Thermolysis and photolysis experiments suggest that the U?Pn bonds degrade by homolytic bond cleavage, whereas the more redox‐robust thorium compounds engage in an acid–base/dehydrocoupling route.  相似文献   

9.
Treatment of [Ph3EMe][I] with [Na{N(SiMe3)2}] affords the ylides [Ph3E=CH2] (E=As, 1As ; P, 1P ). For 1As this overcomes prior difficulties in the synthesis of this classical arsonium‐ylide that have historically impeded its wider study. The structure of 1As has now been determined, 45 years after it was first convincingly isolated, and compared to 1P , confirming the long‐proposed hypothesis of increasing pyramidalisation of the ylide‐carbon, highlighting the increasing dominance of E+?C? dipolar resonance form (sp3‐C) over the E=C ene π‐bonded form (sp2‐C), as group 15 is descended. The uranium(IV)–cyclometallate complex [U{N(CH2CH2NSiPri3)2(CH2CH2SiPri2CH(Me)CH2)}] reacts with 1As and 1P by α‐proton abstraction to give [U(TrenTIPS)(CHEPh3)] (TrenTIPS=N(CH2CH2NSiPri3)3; E=As, 2As ; P, 2P ), where 2As is an unprecedented structurally characterised arsonium‐carbene complex. The short U?C distances and obtuse U‐C‐E angles suggest significant U=C double bond character. A shorter U?C distance is found for 2As than 2P , consistent with increased uranium‐ and reduced pnictonium‐stabilisation of the carbene as group 15 is descended, which is supported by quantum chemical calculations.  相似文献   

10.
Treatment of [Ph3EMe][I] with [Na{N(SiMe3)2}] affords the ylides [Ph3E=CH2] (E=As, 1As ; P, 1P ). For 1As this overcomes prior difficulties in the synthesis of this classical arsonium-ylide that have historically impeded its wider study. The structure of 1As has now been determined, 45 years after it was first convincingly isolated, and compared to 1P , confirming the long-proposed hypothesis of increasing pyramidalisation of the ylide-carbon, highlighting the increasing dominance of E+−C dipolar resonance form (sp3-C) over the E=C ene π-bonded form (sp2-C), as group 15 is descended. The uranium(IV)–cyclometallate complex [U{N(CH2CH2NSiPri3)2(CH2CH2SiPri2CH(Me)CH2)}] reacts with 1As and 1P by α-proton abstraction to give [U(TrenTIPS)(CHEPh3)] (TrenTIPS=N(CH2CH2NSiPri3)3; E=As, 2As ; P, 2P ), where 2As is an unprecedented structurally characterised arsonium-carbene complex. The short U−C distances and obtuse U-C-E angles suggest significant U=C double bond character. A shorter U−C distance is found for 2As than 2P , consistent with increased uranium- and reduced pnictonium-stabilisation of the carbene as group 15 is descended, which is supported by quantum chemical calculations.  相似文献   

11.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

12.
The reaction of the NHC iPr2Im [NHC=N‐heterocyclic carbene, iPr2Im = 1, 3‐bis(isopropyl)imidazolin‐2‐ylidene] with freshly prepared NiBr2 in thf or dme results in the formation of the air stable nickel(II) complex trans‐[Ni(iPr2Im)2Br2] ( 2 ). Complex 2 was structurally characterized. Thermal analysis (DTA/TG) reveals a very high decomposition temperature of 298 °C. Reduction of 2 with sodium or C8K in the presence of the olefins COD (cyclooctadiene) or COE (cyclooctene) affords the highly reactive compounds [Ni2(iPr2Im)4(COD)] ( 1 ) and [Ni(iPr2Im)2(COE)] ( 4 ). Alkylation of 2 with organolithiums leads to the formation of trans‐[Ni(iPr2Im)2(R)2] [R = Me ( 5 ), CH2SiMe3 ( 6 )], whereas the reaction of 2 with LiCp* [Cp* = (η5‐C5(CH3)5)] at 80 °C causes the loss of one NHC ligand and affords [(η5‐C5(CH3)5)Ni(iPr2Im)Br] ( 7 ).  相似文献   

13.
The coordination chemistry of the 1,2‐BN‐cyclohexanes 2,2‐R2‐1,2‐B,N‐C4H10 (R2=HH, MeH, Me2) with Ir and Rh metal fragments has been studied. This led to the solution (NMR spectroscopy) and solid‐state (X‐ray diffraction) characterization of [Ir(PCy3)2(H)22η2‐H2BNR2C4H8)][BArF4] (NR2=NH2, NMeH) and [Rh(iPr2PCH2CH2CH2PiPr2)(η2η2‐H2BNR2C4H8)][BArF4] (NR2=NH2, NMeH, NMe2). For NR2=NH2 subsequent metal‐promoted, dehydrocoupling shows the eventual formation of the cyclic tricyclic borazine [BNC4H8]3, via amino‐borane and, tentatively characterized using DFT/GIAO chemical shift calculations, cycloborazane intermediates. For NR2=NMeH the final product is the cyclic amino‐borane HBNMeC4H8. The mechanism of dehydrogenation of 2,2‐H,Me‐1,2‐B,N‐C4H10 using the {Rh(iPr2PCH2CH2CH2PiPr2)}+ catalyst has been probed. Catalytic experiments indicate the rapid formation of a dimeric species, [Rh2(iPr2PCH2CH2CH2PiPr2)2H5][BArF4]. Using the initial rate method starting from this dimer, a first‐order relationship to [amine‐borane], but half‐order to [Rh] is established, which is suggested to be due to a rapid dimer–monomer equilibrium operating.  相似文献   

14.
Mono‐ and Dinuclear Rhodium Complexes with Arsino(phosphino)methanes in Different Coordination Modes The cyclooctadiene complex [Rh(η4‐C8H12)(κ2tBu2AsCH2PiPr2)](PF6) ( 1a ) reacts with CO and CNtBu to give the substitution products [Rh(L)22tBu2AsCH2PiPr2)](PF6) ( 2 , 3 ). From 1a and Na(acac) in the presence of CO the neutral compound [Rh(κ2‐acac)(CO)(κ‐PtBu2AsCH2PiPr2)] ( 4 ) is formed. The reactions of 1a , the corresponding B(ArF)4‐salt 1b and [Rh(η4‐C8H12)(κ2iPr2AsCH2PiPr2)](PF6) ( 5 ) with acetonitrile under a H2 atmosphere affords the complexes [Rh(CH3CN)22‐R2AsCH2PiPr2)]X ( 6a , 6b , 7 ), of which 6a (R = tBu; X = PF6) gives upon treatment with Na(acac‐f6) the bis(chelate) compound [Rh(κ2‐acac‐f6)(κ2tBu2AsCH2PiPr2)] ( 8 ). From 8 and CH3I a mixture of two stereoisomers of composition [Rh(CH3)I(κ2‐acac‐f6)(κ2tBu2AsCH2PiPr2)] ( 9/10 ) is generated by oxidative addition, and the molecular structure of the racemate 9 has been determined. The reactions of 1a and 5 with CO in the presence of NaCl leads to the formation of the “A‐frame” complexes [Rh2(CO)2(μ‐Cl)(μ‐R2AsCH2PiPr2)2](PF6) ( 11 , 12 ), which have been characterized crystallographically. From 11 and 12 the dinuclear substitution products [Rh2(CO)2(μ‐X)(μ‐R2AsCH2PiPr2)2](PF6) ( 13 ‐ 16 ) are obtained by replacing the bridging chloride for bromide, hydride or hydroxide, respectively. While 12 (R = iPr) reacts with NaI to give the related “A‐frame” complex 18 , treatment of 11 (R = tBu) with NaI yields the mononuclear chelate compound [RhI(CO)(κ2tBu2AsCH2PiPr2)] ( 20 ). The reaction of 20 with CH3I affords the acetyl complex [RhI2{C(O)CH3}(κ2tBu2AsCH2PiPr2)] ( 21 ) with five‐coordinate rhodium atom.  相似文献   

15.
This contribution reports on a new family of NiII pincer complexes featuring phosphinite and functional imidazolyl arms. The proligands RPIMCHOPR′ react at room temperature with NiII precursors to give the corresponding complexes [(RPIMCOPR′)NiBr], where RPIMCOPRPCP‐{2‐(R′2PO),6‐(R2PC3H2N2)C6H3}, R=iPr, R′=iPr ( 3 b , 84 %) or Ph ( 3 c , 45 %). Selective N‐methylation of the imidazole imine moiety in 3 b by MeOTf (OTf=OSO2CF3) gave the corresponding imidazoliophosphine [(iPrPIMIOCOPiPr)NiBr][OTf], 4 b , in 89 % yield (iPrPIMIOCOPiPrPCP‐{2‐(iPr2PO),6‐(iPr2PC4H5N2)C6H3}). Treating 4 b with NaOEt led to the NHC derivative [(NHCCOPiPr)NiBr], 5 b , in 47 % yield (NHCCOPiPrPCC‐{2‐(iPr2PO),6‐(C4H5N2)C6H3)}). The bromo derivatives 3–5 were then treated with AgOTf in acetonitrile to give the corresponding cationic species [(RPIMCOPR)Ni(MeCN)][OTf] [R=Ph, 6 a (89 %) or iPr, 6 b (90 %)], [(RPIMIOCOPR)Ni(MeCN)][OTf]2 [R=Ph, 7 a (79 %) or iPr, 7 b (88 %)], and [(NHCCOPR)Ni(MeCN)][OTf] [R=Ph, 8 a (85 %) or iPr, 8 b (84 %)]. All new complexes have been characterized by NMR and IR spectroscopy, whereas 3 b , 3 c , 5 b , 6 b , and 8 a were also subjected to X‐ray diffraction studies. The acetonitrile adducts 6 – 8 were further studied by using various theoretical analysis tools. In the presence of excess nitrile and amine, the cationic acetonitrile adducts 6 – 8 catalyze hydroamination of nitriles to give unsymmetrical amidines with catalytic turnover numbers of up to 95.  相似文献   

16.
The aromatic osmacyclopropenefuran bicycles [OsTp{κ3‐C1,C2,O‐(C1H2C2CHC(OEt)O)}(PiPr3)]BF4 (Tp=hydridotris(1‐pyrazolyl)borate) and [OsH{κ3‐C1,C2,O‐(C1H2C2CHC(OEt)O)}(CO)(PiPr3)2]BF4, with the metal fragment in a common vertex between the fused three‐ and five‐membered rings, have been prepared via the π‐allene intermediates [OsTp(η2‐CH2=CCHCO2Et)(OCMe2)(PiPr3)]BF4 and [OsH(η2‐CH2=CCHCO2Et)(CO)(OH2)(PiPr3)2]BF4, and their aromaticity analyzed by DFT calculations. The bicycle containing the [OsH(CO)(PiPr3)2]+ metal fragment is a key intermediate in the [OsH(CO)(OH2)2(PiPr3)2]BF4‐catalyzed regioselective anti‐Markovnikov hydration of ethyl buta‐2,3‐dienoate to ethyl 4‐hydroxycrotonate.  相似文献   

17.
The dimethyl aryloxide complexes [(PNP)M(CH3)2(OAr)] (M=Zr or Hf; PNP?=N[2‐P(CHMe2)2‐4‐methylphenyl]2); Ar=2,6‐iPr2C6H3), which were readily prepared from [(PNP)M(CH3)3] by alcoholysis with HOAr, undergo photolytically induced α‐hydrogen abstraction to cleanly produce complexes [(PNP)M=CH2(OAr)] with terminal methylidene ligands. These unique systems have been fully characterized, including the determination of a solid‐state structure in the case of M=Zr.  相似文献   

18.
The reaction of [Zr(TrenDMBS)(Cl)] [ Zr1 ; TrenDMBS=N(CH2CH2NSiMe2But )3] with NaPH2 gave the terminal parent phosphanide complex [Zr(TrenDMBS)(PH2)] [ Zr2 ; Zr−P=2.690(2) Å]. Treatment of Zr2 with one equivalent of KCH2C6H5 and two equivalents of benzo‐15‐crown‐5 ether (B15C5) afforded an unprecedented example (outside of matrix isolation) of a structurally authenticated transition‐metal terminal parent phosphinidene complex [Zr(TrenDMBS)(PH)][K(B15C5)2] [ Zr3 ; Zr=P=2.472(2) Å]. DFT calculations reveal a polarized‐covalent Zr=P double bond, with a Mayer bond order of 1.48, and together with IR spectroscopic data also suggest an agostic‐type Zr⋅⋅⋅HP interaction [∡ZrPH=66.7°] which is unexpectedly similar to that found in cryogenic, spectroscopically observed phosphinidene species. Surprisingly, computational data suggest that the Zr=P linkage is similarly polarized, and thus as covalent, as essentially isostructural U=P and Th=P analogues.  相似文献   

19.
Oxidation of Triisopropylphosphane with Iodine: The Role of Dry or Moist Solvent i‐Pr3P ( 1 ) and iodine give i‐Pr3PI2 ( 2 ). In crystals obtained from CH2Cl2 solution, ion pairs [i‐Pr3PI+I] of 2 exhibiting I…I interactions are linked by CH2Cl2 molecules. With a second equivalent of iodine, i‐Pr3PI+ I3 ( 3 ) is formed; the reaction of 2 with AgSbF6 provides i‐Pr3PI+SbF6 ( 6 ). The presence of moisture and air leads to the formation of i‐Pr3POH+ salts. Solid i‐Pr3POH+I ( 4 ) exhibits P–O–H…I cation‐anion contacts, solid (i‐Pr3PO)2H+I3 ( 5 ) contains a centrosymmetric P=O…H…O=P‐bridged cation. Distinguishing i‐Pr3PI+ salts 2 , 3 from hydrolysis products 4 , 5 by 31P‐NMR in reaction mixtures is not trivial, because both kinds of cations exihibit similar 31P‐NMR shifts and both participate in interactions with their anions, and in equilibria with uncharged donors: rapid I+ transfer reactions and I…I soft‐soft interactions involving 1 , and rapid H+ transfer reactions and hydrogen bonds involving i‐Pr3P=O ( 7 ).  相似文献   

20.
We report the preparation and the full characterization of a novel mononuclear trigonal bipyramidal CoII complex [Co(NS3iPr)Br](BPh4) ( 1 ) with the tetradentate sulfur‐containing ligand NS3iPr (N(CH2CH2SCH(CH3)2)3). The comparison of its magnetic behaviour with those of two previously reported compounds [Co(NS3iPr)Cl](BPh4) ( 2 ) and [Co(NS3tBu)Br](ClO4) ( 3 ) (NS3tBu=N(CH2CH2SC(CH3)3)3) with similar structures shows that 1 displays a single‐molecule magnet behaviour with the longest magnetic relaxation time (0.051 s) at T=1.8 K, which is almost thirty times larger than that of 3 (0.0019 s) and more than three times larger than that of 2 (0.015 s), though its effective energy barrier (26 cm?1) is smaller. Compound 1 , which contains two crystallographically independent molecules, presents smaller rhombic parameters (E=1.45 and 0.59 cm?1) than 2 (E=2.05 and 1.02 cm?1) and 3 (E=2.00 and 0.80 cm?1) obtained from theoretical calculations. Compounds 2 and 3 have almost the same axial (D) and rhombic (E) parameter values, but present a large difference of their effective energy barrier and magnetic relaxation which may be attributed to the larger volume of BPh4? than ClO4? leading to larger diamagnetic dilution (weaker magnetic dipolar interaction) for 2 than for 3 . The combination of these factors leads to a much slower magnetic relaxation for 1 than for the two other compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号