首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Two new tetranuclear chalcocyanide cluster complexes, [{Mn(saloph)H2O}4Re4Q4(CN)12]?4 CH3OH? 8 H2O (saloph=N,N′o‐phenylenebis(salicylidenaminato), Q=Se ( 1 ‐Se), Te ( 2 ‐Te)), have been synthesized by the diffusion of a methanolic solution of [PPh4]4[Re4Q4(CN)12] into a methanolic solution of [Mn(saloph)]+. The structure of 2 ‐Te has been determined by X‐ray crystallography. These rhenium cluster‐supported [MnIII(saloph)] complexes have been found to efficiently catalyze a wide range of olefin epoxidations under mild experimental conditions in the presence of meta‐chloroperbenzoic acid (mCPBA). Olefin epoxidation by these catalysts is proposed to involve the multiple active oxidants MnV?O, MnIV?O, and MnIII? OOC(O)R. Evidence in support of this interpretation has been derived from reactivity and Hammett studies, H218O‐exchange experiments, and the use of peroxyphenylacetic acid as a mechanistic probe. Moreover, it has been observed that the participation of MnV?O, MnIV?O, and MnIII? OOC(O)R can be controlled by changing the substrate concentration. This mechanism provides the greatest congruity with related oxidation reactions that employ certain Mn complexes as catalysts.  相似文献   

2.
Reaction of CuCl2 · 2H2O with chiral Schiff bases and sodium dicyanamide led to the formation of two chiral copper(II) coordination polymers, namely [Cu4(L1)2(dca)4]n ( 1 ) and [Cu2(L2)(μ‐Cl)(dca)(H2O)]n · nH2O ( 2 ) {H2L1 = (1R, 3S)‐N′,N′′‐bis[salicylidene]‐1,3‐diamino‐ 1,2,2‐trimethylcyclopentane, H2L2 = (1R, 3S)‐N′,N′′‐bis[3‐ethoxysalicylidene]‐1,3‐diamino‐ 1,2,2‐trimethylcyclopentane, dca = dicyanamide}. Both complexes were structurally characterized by elemental analyses, IR spectroscopy and single‐crystal X‐ray diffraction. Complex 1 exhibits a two‐dimensional polymeric structure formed by single dca bridging tetranuclear Cu4 units. Complex 2 displays a left‐handed helical chain structure constructed from Cu2 dimers with single dca bridges. The chirality of 1 and 2 was confirmed by circular dichroism (CD) measurements in solution. Both complexes exhibit strong antiferromagnetic couplings with J = –308(4) cm–1 for 1 and J = –123(1) cm–1 for 2 in 2–300 K.  相似文献   

3.
In this study, some cobalt(II)tetraaza Schiff base complexes were used as donors in coordinating to triphenyltin(IV)chloride as acceptors; the kinetics and mechanism of the adduct formation were studied spectrophotometrically. Co(II)tetraaza Schiff base complexes used were [Co(amaen)][N,N′‐ethylene‐bis‐(o‐amino‐α‐methylbenzylideneiminato)cobalt(II)] ( 1 ), [Co(appn)] [N,N′‐1,2‐propylene‐bis‐(o‐amino‐α‐phenylbenzylideneiminato)cobalt(II)] ( 2 ), [Co(ampen)] [N,N′‐ethylene‐bis‐(o‐amino‐α‐phenylbenzylideneiminato)cobalt‐(II)] ( 3 ), [Co(cappn)][N,N′‐1,2‐proylene‐bis‐(5‐chloro‐o‐amino‐α‐phenylbenzylideneiminato)cobalt(II)] ( 4 ), and [Co(campen)] [N,N′‐ethylene‐bis‐(5‐chloro‐o‐amino‐α‐phenylbenzylid‐eneiminato)cobalt(II)] ( 5 ). The reactivity trend of the complexes in interaction with triphenyltin(IV)chloride was Co(amaen) > Co(appn) > Co(ampen) > Co(cappn) > Co(campen). The linear plots of kobs versus the molar concentration of the triphenyltin(IV)chloride, a high span of the second‐order rate constant k2 values, and large negative values of ΔS and low ΔH values suggest an associative (A) mechanism for the acceptor–donor adduct formation. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 635–640, 2012  相似文献   

4.
The effects of alkyloxy substituents attached to one phthalocyanine ligand of three heteroleptic bis(phthalocyaninato) yttrium complexes Y(Pc)[Pc(α‐OCH3)4] ( 1 ), Y(Pc)[Pc(α‐OCH3)8] ( 2 ), and Y(Pc)[Pc(β‐OCH3)8] ( 3 ), as well as their reduction products {Y(Pc)[Pc(α‐OCH3)4]}? ( 4 ), {Y(Pc)[Pc(α‐OCH3)8]}? ( 5 ), and {Y(Pc)[Pc(β‐OCH3)8]}? ( 6 ) [H2Pc(α‐OCH3)4=1,8,15,22‐tetrakis(methyloxy)phthalocyanine; H2Pc(α‐OCH3)8=1,4,8,11,15,18,22,25‐octakis(methyloxy)phthalocyanine; H2Pc(β‐OCH3)8=2,3,9,10,16,17,23,24‐octakis(methyloxy)phthalocyanine] are studied by DFT calculations. Good consistency is found between the calculated results and experimental data for the electronic absorption, IR, and Raman spectra of 1 and 3 . Introduction of electron‐donating methyloxy groups on one phthalocyanine ring of the heteroleptic double‐deckers induces structural deformation in both phthalocyanine ligands, electron transfer between the two phthalocyanine rings, changes in orbital energy and composition, shift of electronic absorption bands, and different vibrational modes of the unsubstituted and substituted phthalocyanine ligands in the IR and Raman spectra in comparison with the unsubstituted homoleptic counterpart Y(Pc)2. The calculations reveal that incorporation of methyloxy substituents at the nonperipheral positions has greater influence on the structure and spectroscopic properties of bis(phthalocyaninato) yttrium double‐deckers than at the peripheral positions, which increases with increasing number of substituents. Nevertheless, the substituent effect of alkyloxy substituents at one phthalocyanine ligand of the double‐decker on the unsubstituted phthalocyanine ring and on the whole molecule and the importance of the position and number of alkyloxy substituents are discussed. In addition, the effect of reducing 1 – 3 to 4 – 6 on the structure and spectroscopic properties of the bis(phthalocyaninato) yttrium compounds is also discussed. This systemic DFT study is not only useful for understanding the structure and spectroscopic properties of bis(phthalocyaninato) rare earth metal complexes but also helpful in designing and preparing double‐deckers with tunable structure and properties.  相似文献   

5.
Novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2‐hydroxy‐1‐naphthaldehyde and D, L ‐selenomethionine were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and powder XRD. The analytical data showed the composition of the metal complex to be ML(H2O), where L is the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). IR results confirmed the tridentate binding of the Schiff base ligand involving azomethine nitrogen, naphthol oxygen and carboxylato oxygen atoms. 1H NMR spectral data of lithium salt of the Schiff base ligand [Li(HL)] and ZnL(H2O) agreed with the proposed structures. The conductivity values of complexes between 12.50 and 15.45 S cm2 mol?1 in DMF suggested the presence of non‐electrolyte species. The powder XRD studies indicated that Co(II) complex is amorphous, whereas Cu(II) and Zn(II) complexes are crystalline. The results of antibacterial and antifungal screening studies indicated that Li(HL) and its metal complexes are active, but CuL(H2O) is most active among them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Four new complexes of [Cu(bpm)(ox)(H2O)] ( 1 ), [Cu(tpd)(dca)(H2O)] ( 2 ), [Cu(bppz)(N3)2] ( 3 ), and [Cu(bpm)21,3‐N3)(N3)] ( 4 ) (bpm = 2,2′‐bipyrimidine, bppz = 2,3‐bis(2‐pyridyl)pyrazine, tpd = 4‐terpyridone, dca = dicyanamide, ox = oxalate) have been prepared and characterized by X‐ray single‐crystal analysis and variable‐temperature magnetic measurements. Compounds 1–4 are essentially mononuclear Cu(II) complexes. However, in complex 1 , Cu(II) it was found that intermolecular hydrogen bonding through between H2O and ox formed 1‐D chain structure. In complex 2 it was found that the hydrogen bonding between H2O and tpd of the next molecule led to for a binuclear Cu(II) complex. In complex 3 , two nitrogen atoms, one of the pyridyl group of bppz and one of N3? ligands, are weakly coordinated to neighbor Cu(II) ion thus leading to formation of a 1‐D chain structure. In complex 4 , one nitrogen atom of terminated N3? is weakly coordinated to the neighbor Cu(II) site to form a 1‐D polymeric structure. The magnetic susceptibility measurements indicate that complex 1 and 4 exhibit a weak antiferromagnetic interaction whereas a ferromagnetic coupling has been established for complexes 2 and 3 .  相似文献   

7.
Coordination compounds of Fe(III), Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II) ions were synthesized from the ligand [4,4′‐((((ethane‐1,2‐diylbis(oxy))bis(2,1‐phenylene))bis(methanylylidene))bis(azanylylidene))diphenol]ethane (H2L) derived from the condensation of bisaldehyde and 4‐aminophenol. Microanalysis, magnetic susceptibility, infrared, 1H NMR and mass spectroscopies, molar conductance, X ray powder diffraction and thermal analysis were used to confirm the structure of the synthesized chelates. According to the data obtained, the composition of the 1:1 metal ion–bis‐Schiff base ligand was found to be [M(H2L)(H2O)2]Cln (M = Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II), n = 2; Fe(III), n = 3). Magnetic susceptibility measurements and reflectance spectra suggested an octahedral geometry for the complexes. Central metals ions and bis‐Schiff base coordinated together via O2 and N2 donor sites which as evident from infrared spectra. The Gaussian09 program was applied to optimize the structural formula for the investigated Schiff base ligand. The energy gaps and other important theoretical parameters were calculated applying the DFT/B3LYP method. Molecular docking using AutoDock tools was utilized to explain the experimental behaviour of the Schiff base ligand towards proteins of Bacillus subtilis (5 h67), Escherichia coli (3 t88), Proteus vulgaris (5i39) and Staphylococcus aureus (3ty7) microorganisms through theoretical calculations. The docked protein receptors were investigated and the energies of hydrogen bonding were calculated. These complexes were then subjected to in vitro antibacterial studies against several organisms, both Gram negative (P. vulgaris and E. coli) and Gram positive (S. pyogones and B. subtilis). The ligand and metal complexes exhibited good microbial activity against the Gram‐positive and Gram‐negative bacteria.  相似文献   

8.
A new series of palladium complexes ( Pd1–Pd5 ) ligated by symmetrical 2,3‐diiminobutane derivatives, 2,3‐bis[2,6‐bis{bis(4‐FC6H4)2CH}2‐4‐(alkyl)C6H2N]C4H6 (alkyl = Me L1 , Et L2 , i Pr L3 , t Bu L4 ) and 2,3‐bis[2,6‐bis{bis(C6H5)2CH}2‐4‐{(CH3)3C}C6H2N]C4H6 L5 , have been prepared and well characterized, and their catalytic scope toward ethylene polymerization have been investigated. Upon activation with MAO, all palladium complexes ( Pd1–Pd5) exhibited good activities (up to 1.44 × 106 g (PE) mol?1(Pd) h?1) and produced higher molecular weight polyethylene in the range of 105 g mol?1 with precise molecular weight distribution (M w/M n = 1.37–1.77). One of the long‐standing limiting features of the Brookhart type α‐diimine Pd(II) catalysts is that they produce highly branched (ca. 100/1000 C atoms) and totally amorphous polymer. Conversely, herein Pd5 produced polymers having dramatically lower branching number (28/1000) as well as improved melting temperature up to 73.1 °C showing well‐controlled linear architecture, and very similar to polyethylene materials generated by early‐transition‐metal based catalysts. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3214–3222  相似文献   

9.
M(HL)(H2O)n complexes have been obtained by the electrochemical reaction of Fe, Co, Ni, Cu, Zn and Cd anodes with the potentially pentadentate and trianionic asymmetrical Schiff base 3‐aza‐N‐{2‐[1‐aza‐2‐(5‐nitro‐2‐hydroxylphenyl)‐vinyl]phenyl}‐4‐(5‐nitro‐2‐hydroxyphenyl)but‐3‐enamide (H3L), containing a hard amido donor atom. The complexes have been characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopies, magnetic measurements and molar conductivities. Co(HL)(H2O) ( 2 ) has been found to rearrange in DMF solution into a crystallographically solved octahedral complex, CoL1(H2O)2 ( 7 ) [where H2L1 is the symmetrical Schiff base ligand N,N′‐(1,2‐phenylene)‐bis(5‐nitro‐3‐hydroxysalicylidenimine)]. A hydrolysis mechanism is discussed to explain this rearrangement.  相似文献   

10.
Two cobalt(II) coordination polymers, namely {[Co(HO‐BDC)(bbe)] · (H2O)}n ( 1 ), and {[Co(O‐BDC)(bbp)] · (H2O)}n ( 2 ) (HO‐H2BDC = 5‐hydroxyisophthalic acid, bbe = 1, 2‐bis(benzoimidazol‐2‐yl)ethane, and bbp = 1, 3‐bis(benzoimidazol‐2‐yl)propane) were synthesized under hydrothermal conditions, and characterized by elemental analyses, IR spectroscopy, single‐crystal X‐ray diffraction, and thermogravimetric analyses. Compound 1 is a 1D chain, whereas 2 is a (3, 3)‐connected 2D network with (63) topology. These two 1D and 2D complexes are further connected by hydrogen bonds to form the 3D supramolecular architectures. The electrochemical lithium‐ion storage properties of the as‐made Co3O4 by calcination of 1 are investigated in detail.  相似文献   

11.
Copper(II) complexes of 3, 4‐hexanedione bis(piperidyl‐ and bis(hexamethyleneiminylthiosemicarbazone), H2Hxpip and H2Hxhexim, respectively, have been prepared and studied spectroscopically. The bis(thiosemicarbazones) have been characterized by their melting points, as well as IR, electronic and 1H NMR spectra. Upon formation of their copper(II) complexes, loss of the hydrazinic hydrogen atoms occurs, and the ligands coordinate as dianionic, tetradentate N2S2 ligands. The crystal structures of H2Hxpip, its 4‐coordinate copper(II) complex, [Cu(Hxpip)], and the related [Cu(Hxhexim)] have been determined by single crystal x‐ray diffraction. The nature of the four‐coordinate copper(II) complexes have also been characterized by ESR, IR, and electronic spectroscopy, as well as magnetic moments and elemental analyses.  相似文献   

12.
We report here the synthesis, structure, magnetic and photoluminescent properties of three new bifunctional Schiff‐base complexes [Dy(L1)2(py)2][B(Ph)4]?py ( 1 ), [Dy(L1)2Cl(DME)] ? 0.5DME ( 2 ) and [Dy(L2)2Cl] ? 2.5(C7H8) ( 3 ) (HL1=Phenol, 2,4‐bis(1,1‐dimethylethyl)‐6‐[[(2‐methoxy‐5‐methylphenyl)imino]methyl]; HL2=Phenol, 2,4‐bis(1,1‐dimethylethyl)‐6‐[[(2‐methoxyphenyl)imino]methyl]). The coordination environment of the Dy3+ ion and the direction of the anisotropic axis may be controlled by the combination of the substituent groups of the Schiff bases, the nature of the counter‐ions (Cl? vs. BPh4?) and the coordinative solvent molecules. A zero‐field slow relaxation of the magnetization is evidenced for all complexes but strong differences in the relaxation dynamics are observed depending on the Dy3+ site geometry. In this sense, complex 1 exhibits an anisotropy barrier of 472 cm?1, which may be favourably compared to other related examples due to the shortening of the Dy?O bond in the axial direction. Besides, the three complexes exhibit a ligand‐based luminescence making them as bifunctional magneto‐luminescent systems.  相似文献   

13.
Paramagnetic copper(II) complexes of the type [Cu(PPh3)(L)] (where L = bifunctional tridentate Schiff bases) were synthesized from the reaction of anthranillic acid with salicylaldehyde (H2L1), 2‐hydroxy‐1‐naphthaldehyde (H2L2), o‐hydroxyacetophenone (H2L3) and o‐vanillin (H2L4) with monomeric metal precursor [CuCl2(PPh3)2]. The obtained complexes were characterized by elemental analysis, magnetic susceptility and spectroscopic methods (FT‐IR, UV–vis and EPR and cyclic voltammetry). EPR and redox potential studies have been carried out to elucidate the electronic structure, nature of metal–ligand bonding and electrochemical features. EPR spectra exhibit a four line pattern with nitrogen super‐hyperfine couplings originating from imine nitrogen atom. These planar complexes possess a significant amount of tetrahedral distortion leading to a pseudo‐square planar geometry, as is evidenced from EPR properties. Cyclic voltammograms of all the complexes display quasireversible oxidations, Cu(III)? Cu(II), in the range 0.31–0.45 V and reduction peaks, Cu(II)? Cu(I),in the range ?0.29 to ?0.36 V, involving a large geometrical change and irreversible. The observed redox potentials vary with respect to the size of the chelate ring of the Schiff base ligands. Further, the catalytic activity of all the complexes has been found to be high towards the oxidation of alcohols into aldehydes and ketones in the presence of N‐methylmorpholine‐N‐oxide as co‐oxidant. The formation of high valent CuIV?O oxo species as a catalytic intermediate is proposed for the catalytic process. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
2,6-Diacetylpyridine bis(benzenesulfonohydrazide) Schiff bases (L1, L2 and L3) and their Cu(II) complexes of the general formula [CuL·H2O] were synthesized and characterized by various spectroscopic techniques. The crystal structure of [CuL3·(py)]·py was investigated by single crystal X-ray structure analysis. The Cu(II) cation has near square pyramidal, penta-coordinate geometry. The binegatively charged tetradentate Schiff base is asymmetrically coordinated to the Cu(II) ion via the pyridine N atom, the azomethine N atom, the sulfonyl O atom and the deprotonated hydrazine N atom. There is a pyridine molecule apically coordinated to the Cu(II) ion. All the Schiff bases and their copper(II) complexes were screened by the disc diffusion method against multi-drug resistant (MDR) gram-negative and gram-positive bacteria. The minimum inhibitory concentration (MIC) values were also determined. These results show that the antibacterial activity of the Schiff bases against Methicillin-resistant Staphylococcus aureus (MRSA) is enhanced when they are chelated with the copper(II) ion.  相似文献   

15.
Eu3+, Dy3+, and Yb3+ complexes of the dota‐derived tetramide N,N′,N″,N′′′‐[1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetrayltetrakis(1‐oxoethane‐2,1‐diyl)]tetrakis[glycine] (H4dotagl) are potential CEST contrast agents in MRI. In the [Ln(dotagl)] complexes, the Ln3+ ion is in the cage formed by the four ring N‐atoms and the amide O‐atom donor atoms, and a H2O molecule occupies the ninth coordination site. The stability constants of the [Ln(dotagl)] complexes are ca. 10 orders of magnitude lower than those of the [Ln(dota)] analogues (H4dota=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The free carboxylate groups in [Ln(dotagl)] are protonated in the pH range 1–5, resulting in mono‐, di‐, tri‐, and tetraprotonated species. Complexes with divalent metals (Mg2+, Ca2+, and Cu2+) are also of relatively low stability. At pH>8, Cu2+ forms a hydroxo complex; however, the amide H‐atom(s) does not dissociate due to the absence of anchor N‐atom(s), which is the result of the rigid structure of the ring. The relaxivities of [Gd(dotagl)] decrease from 10 to 25°, then increase between 30–50°. This unusual trend is interpreted with the low H2O‐exchange rate. The [Ln(dotagl)] complexes form slowly, via the equilibrium formation of a monoprotonated intermediate, which deprotonates and rearranges to the product in a slow, OH?‐catalyzed reaction. The formation rates are lower than those for the corresponding Ln(dota) complexes. The dissociation rate of [Eu(dotagl)] is directly proportional to [H+] (0.1–1.0M HClO4); the proton‐assisted dissociation rate is lower for [Eu(H4dotagl)] (k1=8.1?10?6 M ?1 s?1) than for [Eu(dota)] (k1=1.4?10?5 M ?1 s?1).  相似文献   

16.
The title complexes, hexaaquacobalt(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Co(H2O)6][Bi2(C7H4NO4)4]·2H2O, (I), and hexaaquanickel(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Ni(H2O)6][Bi2(C7H4NO4)4]·2H2O, (II), are isomorphous and crystallize in the triclinic space group P. The transition metal ions are located on the inversion centre and adopt slightly distorted MO6 (M = Co or Ni) octahedral geometries. Two [Bi(pydc)2] units (pydc is pyridine‐2,6‐dicarboxylate) are linked via bridging carboxylate groups into centrosymmetric [Bi2(pydc)4]2− dianions. The crystal packing reveals that the [M(H2O)6]2+ cations, [Bi2(pydc)4]2− anions and solvent water molecules form multiple hydrogen bonds to generate a supramolecular three‐dimensional network. The formation of secondary Bi...O bonds between adjacent [Bi2(pydc)4]2− dimers provides an additional supramolecular synthon that directs and facilitates the crystal packing of both (I) and (II).  相似文献   

17.
Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ‐donating N‐heterocyclic carbene ligands with weak σ‐donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well‐defined silica‐supported catalysts, [(≡SiO)W(=O)(=CHCMe2Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2Ph)(IMes)+][B(ArF)4?] [IMes=1,3‐bis(2,4,6‐trimethylphenyl)‐imidazol‐2‐ylidene, B(ArF)4=B(3,5‐(CF3)2C6H3)4] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene.  相似文献   

18.
A symmetric tetradentate Schiff base ligand bis(3‐methoxysalicylidene)‐o‐phenylenediamine (H2L) was prepared. A series of transition metal complexes with this Schiff base ligand have been synthesized and structurally characterized by IR and elemental analysis. The catalysis for reduction of thionyl chloride was studied by means of constant resistance discharge. The result shows that [Mn(III)LCl(H2O)]CH3OH and [Co(II)HLCl(H2O)] have a good catalytic activity for the reduction of thionyl chloride, which improves the cell voltage, the rate of discharge, and the lifetime of Li/SOCl2 batteries.  相似文献   

19.
The electrochemical reaction of the bis‐bidentate Schiff base H2FTs [N, N′‐bis(2‐tosylaminobenzylidene)‐1, 2‐diaminobencene] with cobalt, nickel, copper, zinc and cadmium, lead to the isolation of neutral [M(FTs)] complexes. All of them were characterized by elemental analyses, mass spectrometry, IR and 1H NMR spectroscopy and magnetic measurements, where appropriate. Recrystallization of the nickel complex yields single crystals of [Ni(FTs)]·CH3CN ( 1 ). The x‐ray characterization shows a distorted square‐planar environment for the nickel atom, with the Schiff base acting as a tetradentate N4 donor. Complex 1 can be described as a mononuclear single‐stranded helical compound, with spontaneous resolution of the P enantiomer upon crystallisation.  相似文献   

20.
The coordination chemistry of multinuclear metal compounds is important because of their relevance to the multi‐metal active sites of various metalloproteins and metalloenzymes. Multinuclear CuII and MnIII compounds are of interest due to their various properties in the fields of coordination chemistry, inorganic biochemistry, catalysis, and optical and magnetic materials. Oxygen‐bridged binuclear MnIII complexes generally exhibit antiferromagnetic interactions and a few examples of ferromagnetic interactions have also been reported. Binuclear CuII complexes are important due to the fact that they provide examples of the simplest case of magnetic interaction involving only two unpaired electrons. Two novel dioxygen‐bridged copper(II) and manganese(III) Schiff base complexes, namely bis(μ‐4‐bromo‐2‐{[(3‐oxidopropyl)imino]methyl}phenolato)dicopper(II), [Cu2(C10H10BrNO2)2], (1), and bis(diaqua{4,4′‐dichloro‐2,2′‐[(1,1‐dimethylethane‐1,2‐diyl)bis(nitrilomethanylylidene)]diphenolato}manganese(III)) bis{μ‐4,4′‐dichloro‐2,2′‐[(1,1‐dimethylethane‐1,2‐diyl)bis(nitrilomethanylylidene)]diphenolato}bis[aquamanganese(III)] tetrakis(perchlorate) ethanol disolvate, [Mn(C18H16Cl2N2O2)(H2O)2]2[Mn2(C18H16Cl2N2O2)2(H2O)2](ClO4)4·2C2H5OH, (2), have been synthesized and single‐crystal X‐ray diffraction has been used to analyze their crystal structures. The structure analyses of (1) and (2) show that each CuII atom is four‐coordinated, with long weak Cu…O interactions of 2.8631 (13) Å linking the dinuclear halves of the centrosymmetric tetranucelar molecules, while each MnIII atom is six‐coordinated. The shortest intra‐ and intermolecular nonbonding Mn…Mn separations are 3.3277 (16) and 5.1763 (19) Å for (2), while the Cu…Cu separations are 3.0237 (3) and 3.4846 (3) Å for (1). The magnetic susceptibilities of (1) and (2) in the solid state were measured in the temperature range 2–300 K and reveal the presence of antiferromagnetic spin‐exchange interactions between the transition metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号