首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new air‐stable Pd(II) complex containing a sulfonamide–Schiff base ligand has been synthesized, characterized and investigated as a catalyst for the Suzuki–Miyaura reactions of aryl halides with arylboronic acids. Theoretical calculations (B3LYP) and spectroscopic evidence suggest that the sulfonamide–Schiff base coordinates to the Pd centre through sulfonamide nitrogen (? SO2NH2) rather than imine (? CH?N). The complex shows excellent cross‐coupling activity with aryl bromides in water at room temperature and aryl chlorides in isopropanol at 60°C. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A new palladium(II) complex containing two sterically hindered ligands, a P,P‐bonded diphosphine and N,N‐bonded Schiff base, within the same coordination sphere has been synthesized and investigated as a catalyst for the Suzuki–Miyaura cross‐coupling reactions of aryl halides with arylboronic acids. The reaction was highly efficient with aryl bromides in water at room temperature and aryl chlorides in dimethylformamide under relatively mild conditions. Excellent yields of coupling products were obtained for a wide range of aryl halides including heteroaryl halides with a low loading of catalyst. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Bis(imino)pyridine palladium(II) complexes 3 and 4 of type [PdCl(L)PF6] are found to be efficient catalysts for Suzuki–Miyaura reactions of aryl halides and arylboronic acids. The reactions proceed smoothly to generate the corresponding biaryl compounds in moderate to excellent yields. The synthesis of various fluorinated biphenyl derivatives was successfully achieved by the complex 4 catalyzed the Suzuki–Miyaura reaction in the presence of surfactants bearing a long alkyl chain. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Palladium supported on silica–chitosan hybrid material was prepared and characterized using thermogravimetric and differential thermogravimetric analyses, scanning electron microscopy, and Fourier transform infrared, energy‐dispersive X‐ray and X‐ray photoelectron spectroscopies. The prepared Pd‐CS@SiO2 catalyst (1 mol%) was used for the Suzuki–Miyaura cross‐coupling reaction of various aryl halides and arylboronic acids in 95% ethanol at 80 °C and the Mizoroki–Heck reaction in dimethylformamide at 110 °C using K2CO3 as a base. The developed catalyst is well suitable for the 3R approach (recoverable, robust, recyclable) for cross‐coupling reactions without appreciable loss of its activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A novel PdCl2/bis(2‐pyridylmethyl)amine‐based ligand ( 1 ) catalytic system, which is water‐soluble and air‐stable, has been successfully synthesized and applied for Suzuki‐Miyaura cross‐coupling reaction. In the presence of catalytic amount of PdCl2/ 1 system, arylboronic acids can couple with a wide range of aryl halides, including aryl bromides and aryl chlorides. The reactions proceed under mild conditions to give excellent yields, and a wide range of functionalities is tolerated.  相似文献   

6.
A nanosilica (derived from rice husk)‐anchored Pd(II)–Schiff base complex has been synthesized and characterized. This immobilized complex has been found to be a very effective and recyclable heterogeneous catalyst for the Suzuki–Miyaura cross‐coupling reaction of various aryl halides with arylboronic acid in aqueous medium under mild conditions. The products were identified using 1H NMR and mass spectral studies. This complex can be easily filtered out from the reaction medium and reused up to six times without significant loss of catalytic activity. Since the reaction proceeds under mild conditions in aqueous medium as well as the catalyst being recyclable, it provides an environmentally benign alternative route to the existing protocols for the Suzuki–Miyaura reaction.  相似文献   

7.
A series of piperidoimidazolinium salts which differ in the chain lengths (butyl, octyl, dodecyl, octadecyl) and their Pd–N‐heterocyclic carbene complexes with pyridine were synthesized and characterized using elemental analysis and spectroscopic methods. The effects of these ligands on catalyst activation and the performance of the complexes were studied in Suzuki–Miyaura reactions of arylboronic acid with aryl chlorides. The complex with the ligand having the longest chain length was found to be most active. The results demonstrated that the length of the alkyl chain of the piperidoimidazolin‐2‐ylidene controlled the dispersion and composition of the nanoparticles and it affected the catalytic activity. The impact of alkyl chain length of piperidoimidazolin‐2‐ylidene on the Suzuki–Miyaura reactions of arylboronic acid with aryl halides was systematically investigated.  相似文献   

8.
Metallomicelles of palladium(II) complex 4 are found to be an efficient catalyst for Suzuki–Miyaura reactions of aryl bromides substituted with a long alkyl chain and arylboronic acids at 80 °C in neat water. The reactions proceed smoothly to generate the corresponding biaryl compounds in moderate to excellent yields. Various biphenyl derivatives were successfully obtained by complex 4 catalysis of the Suzuki–Miyaura reactions in the absence of any surfactants in neat water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
We have observed the enhancing effect of alcoholic solvents in palladium‐catalysed ligand‐free Suzuki–Miyaura reactions. No extra additives or ligands are required for the Suzuki–Miyaura reaction of aryl bromides with arylboronic acids when we carried out the reaction in alcoholic or aqueous alcoholic solvents. Moreover, ethanol or aqueous ethanol is found to be a very good solvent for the Suzuki–Miyaura reaction involving electronically diverse aryl bromides and arylboronic acids under mild and ligand‐free conditions with low catalyst loading. It is observed from Hg(0) poisoning tests that the in situ generated palladium(0) species is the actual catalytic species for the reaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This work reports Suzuki–Miyaura cross‐coupling reactions of arylboronic acid with aryl halide or aryl dibromide mediated by PdCl2 (0.05 mol%) and sodium 4‐(1H‐imidazo[4,5‐f][1,10]phenanthrolin‐1‐yl)butane‐1‐sulfonate (0.05 mol%) at 100 °C in water. The corresponding cross‐coupling products were obtained in good to excellent yields. The catalytic system was recovered from the organic products by extraction with ether and the residual aqueous catalyst phase showed high activity after reuse of at least four cycles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A new nickel(II) σ‐aryl complex, trans‐chloro(9‐phenanthrenyl)bis(triphenylphosphine)nickel(II), was used as a precatalyst for the Suzuki–Miyaura coupling reactions of aryl chlorides. The catalytic conditions were optimized by investigating the cross‐coupling of p‐chloroanisole with phenylboronic acid. The results show that this complex is efficient for both electron‐rich and electron‐deficient aryl chlorides, though it gives better yields for activated arylboronic acids than deactivated ones. All isolated cross‐coupled biaryl products have been characterized by 1H and 13C NMR, and their spectral data are consistent with those reported. Side products from the coupling of arylboronic acid with the precatalyst complex have also been isolated and characterized, which is helpful for understanding the coupling mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A water‐soluble, cyclodextrin‐supported palladium complex (DACH‐Pd‐β‐CD) catalytic system was designed and synthesized, which can efficiently catalyze Suzuki–Miyaura cross‐coupling reactions between aryl halides and arylboronic acid in water under mild conditions. The catalyst was successfully characterized using the methods of transmission electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, thermogravimetric analysis, and Fourier transform infrared and NMR spectroscopies. Furthermore, the catalyst can be easily separated from the reaction mixture and still maintain high catalytic activity after ten cycles. No leaching of palladium into the reaction solution occurred. The advantages of green solvent (water), short reaction times (2–6 h), low catalyst loading (0.001 mol%), excellent yields (up to 99%) and reusability of the catalyst mean it will have potential applications in green chemical synthesis.  相似文献   

13.
A new set of palladium(II) complexes comprising phenyl(thiazolyl)thiourea ligands have been successfully synthesized and characterized with the aid of analytical as well as spectral (IR, UV–visible and NMR) methods. A distorted square‐planar geometry with N^S coordination mode of thiourea ligands in the new palladium complexes was corroborated by single‐crystal X‐ray diffraction methods. Interestingly, the palladium(II) thiourea complexes showed the highest catalytic activity with 0.1 mol% catalyst loading in Suzuki–Miyaura cross‐coupling reactions utilizing a range of aryl bromides/unactivated aryl chlorides with arylboronic acids as coupling partners in aqueous–organic media. Syntheses of diaryl ketones using aryl esters and arylboronic acids as coupling partners were also achieved with low catalyst loading within 20 h. The potential of our catalyst was demonstrated by its wide substrate scope, low catalyst loadings and high isolated yield. Moreover, the influences of key parameters like solvent, base, temperature and catalyst loading were also investigated.  相似文献   

14.
Instantaneous catalytic carbon–carbon bond‐forming reactions were achieved in catalytic membrane‐installed microchannel devices that have a polymeric palladium‐complex membrane. The catalytic membrane‐installed microchannel devices were provided inside the microchannels by means of coordinative and ionic molecular convolution at the interface between the organic and aqueous phases flowing laminarly, in which both non‐crosslinked linear polymer ligands and palladium species dissolved. The palladium‐catalyzed Suzuki–Miyaura reaction of aryl, heteroaryl, and alkenyl halides with arylboronic acids and sodium tetraarylborates was performed with the catalytic membrane‐installed microchannel devices to give quantitative yields of biaryls, heterobiaryls, and aryl alkenes within 5 s of residence time in the defined channel region. These microchannel devices were applied to the instantaneous allylic arylation reaction of allylic esters with arylboron reagents under microflow conditions to afford the corresponding coupling products within 1 s of residence time.  相似文献   

15.
New bis(oxazoline) ligands and their palladium complexes were synthesized and characterized. X-ray crystal structures of the two new complexes showed distorted square planar geometry with the palladium ion bonded to nitrogens of two bidentate heterocycles in addition to two bromides and two acetate ions for Pd-BOX-1 and Pd-BOX-2, respectively. The complexes adopt a chair structure with a rigid curvature inducing an inherent chirality. The complexes were effective catalysts for Suzuki–Miyaura, Mizoroki–Heck, and copper-free Sonogashira coupling reactions in aqueous dimethylformamide and under aerobic conditions. The reaction conditions were optimized for best solvent, base, and temperature. The substrate scope of the new catalytic system was evaluated for coupling reactions of a variety of aryl halides with aryl boronic acids, alkenes, and alkynes.  相似文献   

16.
A polyaniline‐anchored palladium catalyst was prepared and screened for coupling reactions of aryl halides. The robust and recyclable catalyst was effective in Mizoroki–Heck and Suzuki–Miyaura reactions of aryl bromides and aryl iodides. The catalyst system was further employed for one‐pot Wittig–Heck and Wittig–Suzuki combinations to build conjugated compounds in good conversions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A heterogeneous montmorillonite K‐10‐supported palladium triphenylphosphine catalyst is reported for the Suzuki–Miyaura cross‐coupling reaction at room temperature. A library of electronically diverse aryl bromides and arylboronic acids underwent the cross‐coupling reaction at very good rates in aqueous solvent. The reusability of the catalyst was also examined and it was found to be effective up to three catalytic cycles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A new and efficient nanoparticle–N‐heterocyclic carbene–palladium complex was synthesized and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy, energy‐dispersive X‐ray analysis, X‐ray diffraction, transmission electron microscopy, elemental analysis, inductively coupled plasma analysis and vibrating sample magnetometry. This catalytic system was found to be a highly active catalyst in the Mizoroki–Heck and Suzuki–Miyaura cross‐coupling reactions. These reactions were best performed in dimethylformamide and water, respectively, in the presence of only 0.054 mol% of palladium under mild conditions. Moreover, the catalyst could be recovered easily and reused at least ten times without any considerable loss of its catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
氯化钯在氟化四丁基铵中当场生成纳米钯,该钯催化剂在Suzuki-Miyaura交叉偶联反应中显示很高的催化效率。在氯化钯和氟化四丁基铵存在下,许多芳基卤代烃可以顺利与芳基硼酸发生偶联反应,得到中等到高的产率。此外,在Suzuki-Miyaura偶联反应中该氯化钯/氟化四丁基铵催化体系可以回收重复使用多次,并且芳基溴代烃可以在15-60分钟内反应完全。值得指出的是,该反应是在无溶剂、无配体和催化体系可回收重复使用的条件下进行的。这和无配体条件下TBAB中钯催化卤代芳烃与芳基硼酸的Suzuki-Miyaura交叉偶联反应方法。该氯化钯/氟化四丁基铵催化反应的反应机理也进行了讨论。  相似文献   

20.
Silica‐supported terpyridine palladium(II) was prepared and used as an effective and recyclable catalyst in Mizoroki–Heck and Suzuki–Miyaura coupling reactions. The catalyst was very effective for the Mizoroki–Heck reaction of aryl halides with olefins and conversion was in most cases excellent. The catalyst showed good thermal stability (up to 230 °C) and could be recovered and reused for four reaction cycles. The Suzuki coupling of aryl iodides with aryl boronic acids in the presence of the catalyst was also investigated and the reaction proceeded with a short reaction time and excellent conversion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号