首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 860 毫秒
1.
Title compounds of the type 2,3,5,6-tetraphenyl-1,4-di-X-1,4-di-Y-1,4-disilacyclohexa-2,5-diene wherein X=Y=NMe2 (4); X=NMe2, Y=Cl (cis, trans-5); X=NMe2, Y=Me [(trans)-6] and X=t-Bu, Y=Cl (trans-8) were synthesized from Si2(NMe2)5Cl, sym-Si2(NMe2)4Cl2, sym-Si2(NMe2)4Me2, and sym-Si2Cl4(t-Bu)2, respectively, in the presence of diphenylacetylene at 200 °C. Similarly the analogous title compound from the combination of 1-phenyl-1-propyne and Si2(NMe2)5Cl [X=Y=NMe2 (cis and trans-7) was synthesized. In all cases where cis/trans diastereomers could arise from two different silicon substituents (5, 6, 8) the trans isomer was the sole or dominant product. Evidence for the intermediacy of the silylene Si(NMe2)2 in these reactions was gained from a trapping experiment. Compound 4 upon treatment with SiCl4, SiBr4 or PI3 provided the corresponding 1,1,4,4-tetrahalo derivatives 9a-c, respectively. Treatment of 4 with MeOH or PhOH gave the 1,1,4,4-tetramethoxy and tetraphenoxy analogues 9d and 9e, respectively. The tetrachloro derivative 9a upon LAH reduction led to the corresponding tetrahydro compound 10, while the reaction of 9a with H2O gave the tetrahydroxy derivative 11. Allowing (trans)-6 to react with SiCl4 provided a ca. 1:1 cis/trans ratio of the derivative 12 in which X=Cl, Y=Me, and possible pathways that rationalize this loss of stereochemistry are proposed. Synthesis of trans-13 in which X=t-Bu, Y=H was achieved by LAH reduction of 8. All of the title compounds except 8 experience free phenyl rotation at room temperature. At −30 °C this rotation in 8 is essentially halted. The molecular structures of 4, 8, 9c, 9e, 10 and 13 were determined by X-ray crystallography.  相似文献   

2.
G. Bernáth 《Tetrahedron》1972,28(13):3475-3484
From diethyl 3-t-butyladipate (5), via cis- and trans-4-t-butylcyclopentene-1,2-oxide (31, 32) as key compounds, the syntheses of cis-2-amino-cis-4-t-butylcyclopentanol (1), cis-2-amino-trans-4-t-butylcyclopentanol (2), trans-2-amino-cis-4-t-butylcyclopentanol (3) and trans-2-amino-trans-4-t-butylcyclopentanol (4) have been achieved. 1, 3 and 4 were also synthesized from the corresponding 2-hydroxy-4-t-butylcarboxylic acids by Curtius degradation of the hydrazides (11, 18, 19). The steric course of process leading to the above compounds is discussed.  相似文献   

3.
Enantiomerically pure cis- and trans-myrtanylstannanes cis-MyrSnPh3 (1), trans-MyrSnPh3 (2), cis-MyrSnPh2Cl (3), trans-MyrSnPh2Cl (4), cis-MyrSnPhCl2 (5), trans-MyrSnPhCl2 (6), cis-MyrSnCl3 (7), trans-MyrSnCl3 (8) were synthesized and fully characterized by 1H, 13C and 119Sn NMR spectroscopy. The molecular structures of 1, 3, 6, 7, and [trans-MyrSn(OH)Cl2 · H2O]2 (8a) a hydrolysis product of 8, were determined by X-ray crystallography.  相似文献   

4.
The syntheses, structures and ligand conformations of the complexes trans-Cu(L1)2(ClO4)2, (L1 = N-(2-pyrimidinyl)-P,P-diphenyl-phosphinic amide), 1, [trans-Co(L1)2(CH3OH)2](ClO4)2·O(C2H5)2, 2, [trans-Co(L2)2(H2O)2](ClO4)2·2CH3OH, (L2 = N-(2-pyridinyl)-P,P-diphenyl-phosphinic amide), 3, [cis-Co(L2)2(NO3)](NO3), 4, and [Ag(L3)(NO3)(CH3CN)], (L3 = N-(6-methyl-2-pyridinyl)-P,P-diphenyl-phosphinic amide), 5, are reported. The L1 and L2 ligands in the monomeric complexes 1-4 chelate the metal centers through the pyrimidyl/pyridyl nitrogen atoms and the phosphinic amide oxygen atoms, whereas the L3 ligands in complex 5 bridge the metal centers, forming a 1-D zigzag chain. The chelating L2 ligands in complexes 3 and 4 adopt cis conformations and the bridging L3 ligand in complex 5 adopts a trans conformation, respectively.  相似文献   

5.
Two diethyl phosphonated phosphine ligands of formula Ph2P(CH2)3PO3Et2 (ligand L) and Ph2P(4-C6H4PO3Et2) (ligand L′) were used to prepare different complexes of platinum(II) (1, cis-PtCl2L2; 2, trans-PtCl2L2·H2O; 3A and 3B, cis- and trans-PtCl2L′2) and palladium(II) (4, [PdCl2L]2; 5, trans-PdCl2L2·H2O; 6, trans-PdCl2L′2·CH2Cl2). The single-crystal X-ray structure analyses of complexes 1, 2, 4-6 indicate that complexation involved only the phosphine end, whereas the strong polarization of the PO bond was highlighted by the formation of hydrogen bonds with a water molecule in 2 and 5, and with a dichloromethane molecule in 6, with an exceptionally short CH?O hydrogen bond length (C?O separation 3.094(3) Å).  相似文献   

6.
A new chloride-dimethylsulfoxide-ruthenium(III) complex with nicotine trans-[RuIIICl4(DMSO)[H-(Nicotine)]] (1) and three related iridium(III) complexes; [H-(Nicotine)]trans-[IrIIICl4(DMSO)2] (2), trans-[IrIIICl4(DMSO)[H-(Nicotine)]] (3) and mer-[IrIIICl3(DMSO)(Nicotine)2] (4) have been synthesized and characterized by spectroscopic techniques and by single crystal X-ray diffraction (1, 2, and 4). Protonated nicotine at pyrrolidine nitrogen is present in complexes 1 and 3 while two neutral nicotine ligands are observed in 4. In these three inner-sphere complexes coordination occurs through the pyridine nitrogen. Moreover, in the outer-sphere complex 2, an electrostatic interaction is observed between a cationic protonated nicotine at the pyrrolidine nitrogen and the anionic trans-[IrIIICl4(DMSO)2]¯ complex.  相似文献   

7.
The new ferrocenyl substituted ditertiary phosphine {FcCH2N(CH2PPh2)CH2}2 [Fc = (η5-C5H4)Fe(η5-C5H5)] (1) was prepared, in 72% yield, by Mannich based condensation of the known bis secondary amine {FcCH2N(H)CH2}2 with 2 equiv. of Ph2PCH2OH in CH3OH. Phosphine 1 readily coordinates to various transition-metal centres including Mo0, RuII, RhI, PdII, PtII and AuI to afford the heterometallic complexes {RuCl2(p-cym)}2(1) (2), (AuCl)2(1) (3), cis-PtCl2(1) (4), cis-PdCl2(1) (5), cis-Mo(CO)4(1) (6), trans,trans-{Pd(CH3)Cl(1)}2 (7) and trans,trans-{Rh(CO)Cl(1)}2 (8). In complexes 2, 3, 7 and 8 ligand 1 displays a P,P′-bridging mode whilst for 4-6 a P,P′-chelating mode is observed. All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 1, 2 · 2CH2Cl2, 3 · CH2Cl2, 4 · CH2Cl2, 6 · 0.5CHCl3 and 8 have been elucidated by single crystal X-ray crystallography. Electrochemical measurements have been undertaken, and their redox chemistry discussed, on both noncomplexed ligand 1 and representative compounds containing this new ditertiary phosphine.  相似文献   

8.
One-pot synthesis of novel M2E2L2 type metallacycles [L(CO)3Re(μ-SeR)2Re(CO)3L] (1-5) was accomplished by oxidative addition of diaryl diselenide to low-valent transition metal carbonyl with monodentate pyridine ligands. In metallacycles 1-5, where L = pyridine ligand, R = C6H5, CH2C6H5, the pyridyl groups bonded to metal centres invariably adopted cis conformation due to π-π interaction whereas, in compounds 1a and 2a, the pyridyl ligands were oriented in trans conformation. When bulky phenyl groups are introduced at para position of pyridyl rings, as in case of metallacycle 3, the steric hindrance disrupts the soft interaction and resulted into the expansion of space in between two phenylpyridyl groups and created a void. The Metallacycles 1-5 have been characterised by elemental analysis, NMR, IR, absorption and emission spectroscopic techniques. Molecular structures of 1, 1a, 2, 2a, 3 and 4 were determined by single crystal X-ray diffraction analysis and the structural studies of 1, 2, 3 and 4 revealed that the pyridyl groups attached to the metal centres exhibited cis conformation, while 1a, 2a displayed trans conformation.  相似文献   

9.
The reactions of trans-[MoO(ONOMe)Cl2] 1 (ONOMe = methylamino-N,N-bis(2-methylene-4,6-dimethylphenolate) dianion) and trans-[MoO(ONOtBu)Cl2] 2 (ONOtBu = methylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenolate) dianion) with PhNCO afforded new imido molybdenum complexes trans-[Mo(NPh)(ONOMe)Cl2] 3 and trans-[Mo(NPh)(ONOtBu)Cl2] 4, respectively. As analogous oxotungsten starting materials did not show similar reactivity, corresponding imido tungsten complexes were prepared by the reaction between [W(NPh)Cl4] with aminobis(phenol)s. These reactions yielded cis- and trans-isomers of dichloro complexes [W(NPh)(ONOMe)Cl2] 5 and [W(NPh)(ONOtBu)Cl2] 6, respectively. The molecular structures of 4, cis-6 and trans-6 were verified by X-ray crystallography. Organosubstituted imido tungsten(VI) complex cis-[W(NPh)(ONOtBu)Me2] 7 was prepared by the transmetallation reaction of 6 (either cis or trans isomer) with methyl magnesium iodide.  相似文献   

10.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

11.
A bisphosphine in which a PhP-PPh bond bridges 1,8-positions of naphthalene, 1,2-dihydro-1,2-diphenyl-naphtho[1,8-cd]-1,2-diphosphole (1), was used as a bridging ligand for the preparation of dinuclear group 6 metal complexes. Free trans-1, a more stable isomer having two phenyl groups on phosphorus centers mutually trans with respect to a naphthalene plane, was allowed to react with two equivalents of M(CO)5(thf) (M = W, Mo, Cr) at room temperature to give dinuclear complexes (OC)5M(μ-trans-1)M(CO)5 (M = W (2a), Mo (2b), Cr (2c)). The preparation of the corresponding dinuclear complexes bridged by the cis isomer of 1 was also carried out starting from the free trans-1 in the following way. Mono-nuclear complexes M(trans-1)(CO)5 (M = W (3a), Mo (3b), Cr (3c)) which had been prepared by a reaction of trans-1 with one equivalent of the corresponding M(CO)5(thf) (M = W, Mo, Cr) complex, were heated in toluene, wherein a part of the trans-3a-c was converted to their respective cis isomer M(cis-1)(CO)5. Each cis trans mixture of the mono-nuclear complexes 3a-c was treated with the corresponding M(CO)5(thf) to give a cis trans mixture of the respective dinuclear complexes 2a-c. The cis isomer of the ditungsten complex 2a was isolated, and its molecular structure was confirmed by X-ray analysis, showing a shorter W?W distance of 5.1661(3) Å than that of 5.8317(2) Å in trans-2a.  相似文献   

12.
In quest of novel organic donors, dimeric tetrathiafulvalene (TTF) and tetraselenafulvalenes (TSFs) linked by a single or double methyl antimony bridge, MeSb(TTF)2 (1), (MeSb)2(TSF)2 (cis-2 and trans-2), and MeSb(TSF)2 (3), have been synthesized. Singly bridged 1 and 3 show three pairs of redox waves, whereas doubly bridged cis-2 and trans-2 show two pairs of redox waves similarly to TSF. The X-ray structural analyses of neutral crystals, 1, cis-2 and trans-2, have succeeded. In their structures, antimony and chalcogen atoms form close intermolecular contacts useful in constructing supramolecular networks.  相似文献   

13.
Six new divalent lanthanide complexes using triglyme (trigly) and tetraglyme (tetgly) as achiral ligands have been prepared, using a facile synthetic method, in search for enantioselective solid-state reagents. The crystal structures of cis-[SmI2(trigly)thf] (1), trans-[YbI2(trigly)thf] (2), trans-[SmI2(trigly)dme] (3), trans-[YbI2(tetgly)] (4), trans-[EuI2(tetgly)thf] (5), and [Sm(tetgly)2][SmI3(tetgly)]I (6) have been determined. All complexes, except 5, are chiral. The 10-coordinate cation in 6 displays a helical chirality since the two tetraglyme ligands are wrapped around the samarium ion. Since trans-[YbI2(tetgly)] (4), which has a chiral arrangement of terminal methyl groups, crystallizes as a conglomerate, preferential crystallization and consequent enantioselective reduction of acetophenone was attempted, but resulted in racemic products, possibly on account of racemic twinning in 4.  相似文献   

14.
Palladium complexes of N-phenyl-2-pyridylamine (4) and dipyridylamine substrates (7, 11) have been studied. Due to the coordination ability of the pyridine-nitrogen atoms, the pyridyl substrates, 4, 7, 11 were subjected to Pd(OAc)2 complexations and a number of N-aryl-2-pyridylamine Pd complexes (13-17) were isolated and characterised, in particular by NMR and ESI-MS. A new method for the preparation of the acetato-bridged six-membered ring palladacycle complex (13) of 4 is reported. The dipyridyl amines 7, 11 formed cis/trans bis-dentate acetato-bridged dimeric Pd2Lig2(OAc)2 (14a,b/16a,b) and Pd3Lig2(OAc)4 complexes (15a,b/17a,b). The N-aryl-2-pyridylamine substrates (4, 7, 11) were prepared by oxidative nucleophilic substitution, by 1,3-cycloaddition reaction or by Buchwald amination.  相似文献   

15.
Alkylation of cyclohexenyl monoacetate 1 with R2Cu(CN)(MgCl)2 or RMgBr/CuCN (cat.) in Et2O produced trans 1,2-isomers 4, while arylation and alkenylation of 1 was accomplished with lithium borates 5 and a nickel cat. to afford trans 1,4-isomers 3 selectively. Furthermore, several transformations of the products were carried out to demonstrate synthetic advantages of the present reactions.  相似文献   

16.
A practical and expedient synthesis of the title compounds is described. They were prepared by Stille reaction of nitro halopyridines 4 or nitro fluro-halobenzenes 10, followed by Michael addition of tert-butyl 4-aminopiperidine-1-carboxylate to the resulting activated vinyl compounds 5 and 11, hydrogenation (-NO2→-NH2), cyclic urea formation, Boc removal, and HCl salt formation. However, N3 and F1 analogs could not be made by this general strategy. Activated vinyl compounds 5a and 5d when reacted with tert-butyl 4-aminopiperidine-1-carboxylate did not stop at the desired Michael addition stage; but proceeded to produce azaindolines 8 and 9. Michael addition did not occur to compound 11d; instead, the fluorine atom was displaced.  相似文献   

17.
The nucleophilic conjugate addition of chiral formaldehyde N,N-dialkylhydrazones 1 to doubly activated cyclic alkenes 2-8 proceeds smoothly to afford the corresponding Michael adducts 14, 16, 18, 20, 22, 24, and 25 in variable yields and selectivities. The reactions take place either spontaneously or in the presence of MgI2 as a mild Lewis acid depending on the type of substrate. Release of the chiral auxiliary was achieved by transformation of the hydrazone moiety into acetals, dithioacetals or nitriles.  相似文献   

18.
A new organometallic phosphanylalkene, 1-(diphenylphosphanyl)-1′-(dimethylvinylsilyl)ferrocene (2) was prepared and—together with 1-(diphenylphosphanyl)-1′-vinylferrocene (1)—studied as a ligand in iron- and tungsten-carbonyl complexes. The following complexes featuring the mentioned phosphanylalkenes as P-monodentate donors were isolated and characterised by spectral methods: [Fe(CO)4(L-κP)] (4, L = 1; 5, L = 2) and trans-[W(CO)4(L-κP)2] (6, L = 1; 7, L = 2). In addition, the solid-state structures of 4 and 6 have been determined by single-crystal X-ray diffraction and the electrochemical properties of compounds 1, 2, 4 and 6 were studied by cyclic voltammetry at platinum electrode.  相似文献   

19.
The complexes trans-[Os(CCC6H4-4-CCR)Cl(dppe)2] (R = SiPri31, H 2), trans,trans-[(dppe)2ClOs(CCC6H4-4-CC)RuX(dppe)2] (X = Cl 3, CCC6H4-4-CCSiPri34), trans-[Os(CCC6H4-4-CCC6H4-4-CCR)Cl(dppe)2] (R = SiPri35, H 6), and trans,trans-[(dppe)2ClOs(CCC6H4-4-CCC6H4-4-CC)RuCl(dppe)2] (7) have been synthesized, and the identities of 1, 2, and 6 confirmed by single-crystal X-ray diffraction studies. Cyclic voltammetry shows that the mononuclear complexes 1, 2, 5, and 6 are oxidized at potentials within a narrow range (0.45-0.49 V), in processes centered on the osmium ethynyl neighbourhood and for simplicity assigned as OsII/III, while the heterobinuclear complexes 3, 4, and 7 exhibit lower oxidation potentials for OsII/III and a second oxidation process assigned in a similar fashion to RuII/III; the difference in potential between the Os- and Ru-localized processes decreases as the π-bridge is lengthened. UV-vis-NIR spectroelectrochemical studies on 1 and 5 reveal the appearance on oxidation of a low-energy band ascribed to chloro to metal-ethynyl charge transfer. Osmium-centered oxidation at the heterobinuclear complexes 4 and 7 results in appearance of a low-energy band, which blue-shifts and increases in intensity on further oxidation to 42+ and 72+.  相似文献   

20.
An enantioselective synthesis of sterically congested 1,2-di-tert-butyl and 1,2-di-(1-adamantyl)ethylenediamines has been developed. Thus, diastereomerically pure trans-1-apocamphanecarbonyl-4,5-dimethoxy-2-imidazolidinones 6 and 7 were successfully prepared by optical resolution of (±)-trans-4,5-dimethoxy-2-imidazolidinone using apocamphanecarbonyl chloride (MAC-Cl) followed by stereospecific and stepwise substitution of the dimethoxyl groups using tert-butyl or 1-adamantyl cuprates to provide (4S,5S)-4,5-di-tert-butyl and (4R,5R)-4,5-di-(1-adamantyl)-2-imidazolidinones 12 and 15, respectively. Furthermore, N-acetyl 4,5-di-tert-butyl and 4,5-di-(1-adamantyl)-2-imidazolidinones 16a,b were enantioselectively deacetylated using a catalytic oxazaborolidine system to provide enantiopure 1-p-tolylsulfonyl-4,5-di-tert-butyl-2-imidazolidinones 12 and 19 and 1-p-tolylsulfonyl-4,5-di-(1-adamantyl)-2-imidazolidinones 18 and 20, respectively. Finally, N-p-tolylsulfonyl-2-imidazolidinones 12 and 15 were treated with 30 equiv of Ba(OH)2·8H2O to achieve ring cleavage and to provide (1S,2S)-1,2-di-tert-butylethylenediamine 3 and (1R,2R)-1,2-di-(1-adamantyl)ethylenediamine 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号