首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.  相似文献   

2.
Lifetimes of the lowest excited singlet (S1) electronic states of various derivatives of the pyrimidine nucleobase cytosine (Cyt) were measured by the femtosecond transient absorption technique. The bases were excited in room-temperature aqueous solution at 265 nm using approximately 200 fs pump pulses from a titanium-sapphire laser system. The decay of excited-state absorption (ESA) at visible probe wavelengths was used to determine the S1 lifetimes of a variety of modified Cyt compounds at different pH values by global fitting. Identical lifetimes were observed for Cyt and cytidine (Cyd) within experimental uncertainty, but ESA by the ribonucleoside was considerably stronger, suggesting that the ribose group increases the oscillator strength of the S1 --> SN transition. The S1 lifetime of the important minor base 5-methylcytosine (m5Cyt) is 7.2 +/- 0.4 ps at pH 6.8. The same lifetime was measured for the ribonucleoside 5-methylcytidine, but sugar substitution again increased the strength of the ESA signal. Protonation of Cyd and m5Cyt at low pH led to a modest decrease in their S1 lifetimes. On the other hand, deprotonation of Cyt and m5Cyt significantly increased the lifetime of their respective S1 states. These trends support the intermediacy of the n,pi* state localized on the carbonyl oxygen in the nonradiative decay mechanism of Cyt. Longer S1 lifetimes were observed for 5-fluorocytosine and N4-acetylcytosine. Collectively, these results illustrate the great potential of femtosecond laser spectroscopy for investigating excited-state dynamics in DNA and DNA components.  相似文献   

3.
A femtosecond luminescence and transient absorption study of fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3] is reported. An emission with a lifetime component of 230 fs in the spectral region 500–560 nm is assigned to the population equilibration between electronic substates of the lowest excited triplet state, with energy dissipation by intramolecular vibrational redistribution. At shorter wavelengths a strong emission with a faster decay was observed and is attributed to a state with a higher admixture of singlet character. A slower decay on a 3 ps time scale is attributed to vibrational cooling. The results contribute to an understanding of the photophysics of transition metal complexes.  相似文献   

4.
The energy dissipation mechanism from photoexcited azobenzene (Az) was studied by femtosecond time-resolved UV absorption spectroscopy using 7-amino-4-trifluoromethylcoumarin (ATC) as a probe. The distance between the probe molecule and Az was fixed by covalently linking them together through a rigid proline spacer. Picosecond dynamics in THF solutions were studied upon excitation into the S1 state by a 100 fs laser pulse at 480 nm. Transient absorption spectra obtained for Az-Pro-ATC combined the S1 state absorption and vibrationally excited ground-state absorption of ATC. Correction of the transient spectrum of Az-Pro-ATC for the S1 absorption provided the time-resolved absorption spectrum of the ATC hot band. Three major components were observed in the transient kinetics of Az-Pro-ATC vibrational cooling. It is proposed that in ca. 0.25 ps after the excitation, the S1 state of azobenzene decays to form an initial vibrationally excited nonthermalized ground state of Az-Pro-ATC that involves vibrational modes of both azobenzene and coumarin. This hot ground state decays in ca. 0.32 ps to the next, vibrationally equilibrated, transient state by redistributing the energy within the molecule. Subsequently, the latter state cools by transferring its energy to the closest solvent molecules in ca. 5 ps; then, the energy diffuses to the bulk solvent in 13 ps.  相似文献   

5.
Dynamics of the formation of the carbocation in the ground state as a result of photoinduced proton transfer from a solvent to the excited state of 1,2,2,3-tetramethyl-1,2-dihydroquinoline (3MDHQ) in MeOH and 2,2,2-trifluoroethanol (TFE) was registered by pump-probe laser photolysis (λpump = 310 nm) with femtosecond time resolution. The lifetimes of the excited singlet state of 3MDHQ τ = 115 and 780 ps were determined in TFE and MeOH, respectively. The transient species with absorption spectrum corre-sponding to the spectrum of the carbocation from 3MDHQ (λmax = 480 nm) is generated at time delays lower than 500 fs from the unrelaxed excited singlet state.  相似文献   

6.
p-Biphenylyldiazomethane was excited by femtosecond pulses of UV light in acetonitrile, in cyclohexane, and in methanol. Ultrafast photolysis produces a singlet excited state of p-biphenylyldiazomethane with lambdamax = 490 nm, and lifetimes of less than 300 fs in acetonitrile, in cyclohexane, and in methanol. The decay of the excited state is accompanied by the growth of transient absorption with lambdamax = 360 nm. The carrier of this transient absorption is attributed to singlet p-biphenylylcarbene, a result that is consistent with the predictions of TD-DFT calculations. The singlet carbene lifetimes are 200 and 77 ps in acetonitrile and cyclohexane, respectively, and are controlled by intersystem crossing to the lower energy triplet state. The transient absorption does not decay to baseline in acetonitrile, because of the formation of nitrile ylide. The equilibrium mixture of singlet and triplet p-biphenylylcarbene reacts with acetonitrile to form a nitrile ylide (lambdamax = 370 nm), and with cyclohexane by C-H insertion 1-20 ns after the laser pulse. The singlet carbene lifetime is only 7.9 ps in methanol, owing to a rapid reaction with the solvent. Reaction with the solvent gives rise, in part, to a p-biphenylylbenzyl cation (lambdamax = 450 nm, tau = 6.3 ps) in methanol.  相似文献   

7.
Abstract— The excited state behavior of the red light-absorbing form of phytochrome (Pr) was studied on the femtosecond time scale. After excitation of Pr with 75 fs laser pulses at 616 nm the kinetics of the transient absorption changes was recorded at selected wavelengths probing mainly the bleaching of the Pr ground-state absorption and the stimulated emission. The kinetic data obtained indicate the population of an excited state with a 3 ps lifetime immediately after excitation. This state precedes the formation of another excited state with a 32 ps lifetime. The decay of the latter state is followed by the appearance of a first product state that is assumed to represent lunii-R. In addition, 2,3-dihydrobiliverdin, which is considered to be an adequate model of the Pr chro-mophore, was included in the femtosecond studies. The absorption difference spectra recorded at various delay times show an immediate bleaching of the ground-state absorption. Simultaneously with bleaching a broad transient absorption appears between 410 and 525 nm. The data analysis yields similar kinetic components as they were observed in the decay of Pr. It is suggested from this finding that within the first tens of picoseconds after excitation the excited-state properties of Pr are mainly determined by the properties of the chromophore itself.  相似文献   

8.
Ultrafast laser flash photolysis (266 nm) of para- and ortho-biphenyl azide in acetonitrile produces azide excited states that have broad absorption bands centered at 480 nm. The para-biphenyl azide excited singlet state has a lifetime of 100 fs. The excited-state lifetime of the ortho-azide isomer is 450 +/- 150 fs. Decay of the azide excited states is accompanied by the formation of the corresponding known singlet nitrenes (para, lambdamax = 350 nm, ortho, lambdamax = 400 nm). Singlet para-biphenylnitrene is born with excess energy and undergoes vibrational cooling with a time constant of 11 ps to form the long-lived (tau approximately 9 ns) relaxed singlet nitrene. Singlet ortho-biphenylnitrene decays with a lifetime of 16 ps in acetonitrile at ambient temperature.  相似文献   

9.
The modified nucleic acid base, 1-cyclohexyluracil, was studied by femtosecond transient absorption spectroscopy in protic and aprotic solvents of varying polarity. UV excitation at 267 nm populates the lowest-energy bright state, a (1)pipi* state, which has a lifetime of 120-270 fs, depending on the solvent. In all solvents, this initial bright state population bifurcates with approximately 60% undergoing subpicosecond nonradiative decay to the electronic ground state and the remaining population branching to a singlet dark state. The latter absorbs between 340 and 450 nm. The latter state is assigned to the lowest-energy (1)npi* state. It decays to the electronic ground state with a lifetime that varies from 26 ps in water to at least several nanoseconds in aprotic solvents. The results suggest that the two nonradiative decay pathways identified for photoexcited uracil in recent quantum chemical calculations (Matsika, S. J. Phys. Chem. A. 2004, 108, 7584) are simultaneously operative in a wide variety of solvent environments. The lowest-energy triplet state was also detected by transient absorption. The triplet population appears in a few picoseconds and is not formed from the thermalized (1)npi* state. It is suggested that high spin-orbit coupling is found only along initial segments of the nonradiative decay pathways. Efficient intersystem crossing prior to vibrational cooling offers a possible explanation for the wavelength-dependent triplet yields seen in single DNA bases.  相似文献   

10.
Cytochrome c oxidase, the key bioenergetic protein, was studied by femtosecond absorption spectroscopy. Time-resolved spectral characteristics of the difference spectra recorded in the timescale from 80 fs to 20 ps were analyzed. Electronic relaxation of the excitation energy in heme a occurs in three successive steps. After completion of these steps, heme a is in the excited vibrational state of the ground state. Vibrational relaxation, cooling of the heme, occurs for several picoseconds.  相似文献   

11.
Electron photodetachment from the aromatic anion phenolate excited into the π-π* singlet excited state (S(1)) in aqueous solution is studied with ultrafast transient absorption spectroscopy with a time resolution of better than 50 fs. Broad-band transient absorption spectra from 300 to 690 nm are recorded. The transient bands are assigned to the solvated electron, the phenoxyl radical, and the phenolate S(1) excited state, and confirmation of these assignments is achieved using both KNO(3) as electron quencher and time-resolved fluorescence to measure singlet excited state dynamics. The phenolate fluorescence lifetime is found to be short (~20 ps) in water, but the fast decay is only in part due to the electron ejection channel from S(1). Using global target analysis, two electron ejection channels are identified, and we propose that both vibrationally hot S(1) state and the relaxed S(1) state are direct precursors for the solvated electron. Therefore, electron ejection is found just to compete with picosecond time scale vibrational relaxation and electronic radiationless decay channels. This contrasts markedly with <100 fs electron detachment processes for inorganic anions.  相似文献   

12.
The ultrafast relaxation of aqueous iron(II)-tris(bipyridine) upon excitation into the singlet metal-to-ligand charge-transfer band (1MLCT) has been characterized by femtosecond fluorescence up-conversion and transient absorption (TA) studies. The fluorescence experiment shows a very short-lived broad 1MLCT emission band at approximately 600 nm, which decays in < or =20 fs, and a weak emission at approximately 660 nm, which we attribute to the 3MLCT, populated by intersystem crossing (ISC) from the 1MLCT state. The TA studies show a short-lived (<150 fs) excited-state absorption (ESA) below 400 nm, and a longer-lived one above 550 nm, along with the ground-state bleach (GSB). We identify the short-lived ESA as being due to the 3MLCT state. The long-lived ESA decay and the GSB recovery occur on the time scale of the lowest excited high-spin quintet state 5T2 lifetime. A singular value decomposition and a global analysis of the TA data, based on a sequential relaxation model, reveal three characteristic time scales: 120 fs, 960 fs, and 665 ps. The first is the decay of the 3MLCT, the second is identified as the population time of the 5T2 state, while the third is its decay time to the ground state. The anomalously high ISC rate is identical in [RuII(bpy)3]2+ and is therefore independent of the spin-orbit constant of the metal atom. To reconcile these rates with the regular quasi-harmonic vibrational progression of the 1MLCT absorption, we propose a simple model of avoided crossings between singlet and triplet potential curves, induced by the strong spin-orbit interaction. The subsequent relaxation steps down to the 5T2 state dissipate approximately 2000 cm-1/100 fs. This rate is discussed, and we conclude that it nevertheless can be described by the Fermi golden rule, despite its high value.  相似文献   

13.
The relaxation of electronically excited porphycene in acetonitrile solution has been studied by transient absorption spectroscopy supported by global analysis techniques. Three processes following the femtosecond pulse excitation to the S 2 state have been identified: the intramolecular vibrational redistribution on the time scale of tens of femtoseconds, the internal conversion S 2 right arrow-wavy S 1 (750 fs) and thermal equilibration of the molecule by energy exchange with the solvent (16 ps). The recorded transient absorption kinetics exhibit oscillations which have been assigned to the evolution of wavepackets in both S 1 and S 0 states.  相似文献   

14.
Meso-tetra(hydroxyphenyl)chlorin (m-THPC) is a new photosensitizer developed for potential use in photodynamic therapy (PDT) for cancer treatment. In PDT, the accepted mechanism of tumor destruction involves the formation of excited singlet oxygen via intermolecular energy transfer from the excited triplet-state dye to the ground triplet-state oxygen. Femtosecond transient absorption measurements are reported here for the excited singlet state dynamics of m-THPC in solution. The observed early time kinetics were best fit using a triple exponential function with time constants of 350 fs, 80 ps and > or = 3.3 ns. The fastest decay (350 fs) was attributed to either internal conversion from S2 to S1 or vibrational relaxation in S2. Multichannel time-resolved absorption and emission spectroscopies were also used to characterize the excited singlet and triplet states of the dye on nanosecond to microsecond time scales at varying concentrations of oxygen. The nanosecond time-resolved absorption data were fit with a double exponential with time constants of 14 ns and 250 ns in ambient air, corresponding to lifetimes of the S1 and T1 states, respectively. The decay of the T1 state varied linearly with oxygen concentration, from which the intrinsic decay rate constant, ki, of 1.5 x 10(6) s-1 and the biomolecular collisional quenching constant, kc, of 1.7 x 10(9) M-1 s-1 were determined. The lifetime of the S1 state of 10 ns was confirmed by fluorescence measurements. It was found to be independent of oxygen concentration and longer than lifetimes of other photosensitizers.  相似文献   

15.
The excited state intra-molecular proton transfer dynamics of 1-hydroxyanthraquinone in solution are investigated by femtosecond transient absorption spectroscopy and quantum chemistry calculations. Two characteristic bands of excited state absorption and stimu-lated emission are observed in transient absorption spectra with the excitation by the pump wavelength of 400 nm. From the delayed stimulated emission signal, the time scale of the intra-molecular proton transfer is determined to be about 32 fs. The quantum chemistry calculations show that the molecular orbits and the order of the S2 and S1 states are rever-sal and a conical intersection is demonstrated to exist along the proton transfer coordinate. After proton transfer, the second excited state of tautomer populated via the conical intersection undergoes the internal conversion with ~200 fs and the following intermolecular energy relaxation with ~16 ps. The longer component 300 ps can be explained in terms of the relaxation from excited-state tautomer to its ground state. From our observations, two proton transfer pathways via a conical intersection are proposed and the dominated one preserves the molecular orbits.  相似文献   

16.
By employing broadband femtosecond Kerr-gated time-resolved fluorescence (KTRF) and transient absorption (TA) techniques, we report the first (to our knowledge) femtosecond combined time- and wavelength-resolved study on an ultraviolet-excited nucleoside and a single-stranded oligonucleotide (namely adenosine (Ado) and single-stranded adenine oligomer (dA)(20)) in aqueous solution. With the advantages of the ultrafast time resolution, the broad spectral and temporal probe window, and a high sensitivity, our KTRF and TA results enable the real time monitoring and spectral characterization of the excited-state relaxation processes of the Ado nucleoside and (dA)(20) oligonucleotide investigated. The temporal evolution of the 267 nm excited Ado KTRF spectra indicates there are two emitting components with lifetimes of approximately 0.13 ps and approximately 0.45 ps associated with the L(a) and L(b) pipi* excited states, respectively. These Ado results reveal no obvious evidence for the involvement of the npi* state along the irradiative internal conversion pathway. A distinct mechanism involving only the two pipi* states has been proposed for the ultrafast Ado deactivation dynamics in aqueous solution. The time dependence of the 267 nm excited (dA)(20) KTRF and TA spectra reveals temporal evolution from an ultrafast "A-like" state (with a approximately 0.39 ps decay time) to a relatively long-lived E(1) "excimer" (approximately 4.3 ps decay time) and an E(2) "excimer-like" (approximately 182 ps decay time) state. The "A-like" state has a spectral character closely resembling the excited state of Ado. Comparison of the spectral evolution between the results for Ado and (dA)(20) provides unequivocal evidence for the local excitation character of the initially photoexcited (dA)(20). The rapid transformation of the locally excited (dA)(20) component into the delocalized E(1) "excimer" state which then further evolves into the E(2) "excimer-like" state indicates that base stacking has a high ability to modify the excited-state deactivation pathway. This modification appears to occur by suppressing the internal conversion pathway of an individually excited base component where the stacking interaction mediates efficient interbase energy transfer and promotes formation of the collective excited states. This feature of the local excitation that is subsequently followed by rapid energy delocalization into nearby bases may occur in many base multimer systems. Our results provide an important new contribution to better understanding DNA photophysics.  相似文献   

17.
18.
The excited-state dynamics of an oligomer of polydiacetylene, 2,2,17,17-tetramethyloctadeca-5,9,13-trien-3,7,11,15-tetrayne, dissolved in n-hexane have been studied by femtosecond fluorescence upconversion and polarized transient absorption experiments under one- and two-photon excitation conditions. Spectroscopically monitoring the population relaxation in the excited states in real time results in a distinct time separation of the dynamics. It has been concluded that the observed dynamics can be fully accounted for on the basis of the two lower excited states of the target molecule. The S1 (2(1)Ag) state, which cannot be excited from the ground state with one-photon absorption, is verified to be populated via internal conversion in 200+/-40 fs from the strong dipole-allowed S2 (1(1)Bu) state. The population in the "hot" S1 state subsequently cools with a time constant of 6+/-1 ps and decays back to the ground state with a lifetime of 790+/-12 ps.  相似文献   

19.
Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino)cinamate (EDAC) in various solvents has been studied by steady-state absorption and emission, picosecond time-resolved fluorescence spectroscopy and femtosecond transient absorption experiments as well as time-dependent density functional theory (TDDFT). Large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition (ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property. The relaxation dynamics of EDAC in the excited state can be effectively described by a “three state” model where, the locally excited (LE) state converts into the ICT state within 350 ± 100 fs. A combination of solvent reorganization and intramolecular vibrational relaxation within 0.5–6 ps populates the relaxed ICT state which undergoes fluorescence decay within few tens to hundreds of picoseconds.  相似文献   

20.
We present a femtosecond UV-mid-IR pump-probe study of the photochemical ring-opening reaction of the spiropyran 1',3',3',-trimethylspiro-[-2H-1-benzopyran-2,2'-indoline] (also known as BIPS) in tetrachloroethene, using 70 fs UV excitation pulses and probing with 100 fs mid-IR pulses. The time evolution of the transient IR absorption spectrum was monitored over the first 100 ps after UV excitation. We conclude that the merocyanine product is formed with a 28 ps time constant, contrasting with a 0.9 ps time constant obtained in previous investigations where the rise of absorption bands at visible wavelengths were associated with product formation. We deduce from the observed strong recovery of the spiropyran IR absorption bleaches that, in tetrachloroethene, the main decay channel for the S(1) excited state of the spiropyran BIPS, is internal conversion to the spiropyran S(0) state with a quantum yield of > or = 0.9. This puts an upper limit of 0.1 to the quantum yield of the photochemical ring-opening reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号