首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper proposes a method for the determination of lead in aluminum and magnesium antacids employing electrothermal atomic absorption spectrometry (ET AAS). The pyrolysis and atomization temperatures established during the optimization step were 700 and 2200 °C, respectively, using phosphate as the chemical modifier. Under these conditions, a characteristic mass of 25 pg, and limits of detection and quantification of 0.40 and 1.35 μg L−1, respectively were obtained. Some experiments demonstrated that the calibration can be performed employing the external calibration technique using aqueous standards. The precision expressed as relative standard deviation (RSD %) was 4.03% for an antacid sample with lead concentrations of 284.5 μg L−1. The proposed method was applied for the determination of lead in five antacid samples acquired in Salvador City, Brazil. The lead content was varied from 87 to 943 μg g−1. The samples were also analyzed after complete dissolution by inductively coupled plasma mass spectrometry (ICP-MS). No statistical difference was observed between the results obtained by both of the procedures performed.  相似文献   

2.
In this paper is proposed a simultaneous pre-concentration procedure using cloud point extraction for the determination of cadmium and lead in drinking water employing sequential multi-element flame atomic absorption spectrometry. The ligand used is 2-(2-thiazolylazo)-p-cresol (TAC) and the micellar phase is obtained using non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) and centrifugation.The optimization step was performed using two-level factorial design and Doehlert design. A multiple response function was established in order to get experimental conditions for simultaneous extraction of cadmium and lead.The method allows the determination of cadmium and lead with detection limits of 0.077 μg L− 1 and 1.05 μg L− 1 respectively, precision expressed as relative standard deviation (RSD) of 1.5 and 3.3% (n = 10) for cadmium concentrations of 30 μg L− 1 and 50 μg L− 1, respectively, and RSD of 1.8% and 2.7% for lead concentrations of 30 μg L− 1 and 50 μg L− 1, respectively. The accuracy was confirmed by analysis of a certified reference material of natural water.This method was applied for the determination of cadmium and lead in drinking water samples collected in Jaguaquara City, Brazil. Tests of addition/recovery were also performed for some samples and results varied from 95 to 104% for cadmium and 96 to 107% for lead. The cadmium and lead concentrations found in these samples were always lower than the permissible maximum levels stipulated by Brazilian Health Organization.  相似文献   

3.
This paper proposes an alternative analytical method using energy dispersive X-ray fluorescence (EDXRF) to determine Fe and Cu in gasoline samples. In the proposed procedure, samples were distilled and the distillation residues were spotted on cellulose paper disk to form a uniform thin film and to produce a homogeneous and reproducible interface to the XRF instrument. The disks were dried at 60 °C for 20 min and copper and iron were determined directly in the solid phase at 6.40 and 8.04 keV, respectively. The calibration curves showed linear response in the 20-800 μg L−1 concentration range of each metal. The precisions (repeatability) calculated from 15 consecutive measurements and defined as the coefficient of variation of solutions containing 100 μg L−1 of Fe and Cu were 7.8 and 8.1%, respectively. The limits of detection (LOD), defined as the analyte concentration that gives a response equivalent to three times the standard deviation of the blank (n = 10), were found to be 10 and 15 μg L−1 for Fe and Cu, respectively. The proposed method was applied to copper and iron determination in gasoline samples collected from different gas stations.  相似文献   

4.
In the present work, a cloud point extraction (CPE) system has been proposed for determination of species de chromium in the natural water samples, Cr(III) and Cr(VI). The procedure was based on the reaction of Cr(III) with 1-(2-pyridilazo)-2-naphtol (PAN) in a surfactant solution (Triton X-114) yielding a hydrophobic complex, which then is entrapped “in situ” in the surfactant micelles. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of Cr(III)-PAN entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Separation of the two phases was accomplished by centrifugation for 15 min at 2500 rpm. The Cr(VI) assay is based on its reduction to Cr(III) by ascorbic acid which subsequently reacts with PAN in a similar manner. The main factors affecting the cloud point extraction, such as complexation pH (7.7), buffer concentration (0.025 mol L− 1) and microwave irradiation time (10 min) were optimized by response surface methodology (RSM) using Box–Behnken design. Under the optimized conditions, the preconcentration system (50 mL sample) permitted an enrichment factor of 48, linear range of 2.5–80 μg L− 1, limit of detection and quantification of 0.7 and 2.5 μg L− 1, respectively, and the relative standard deviation (n = 10) of 2.0% for 50 μg L− 1 Cr(III) solution and (n = 10) 5.5% for 10 μg L− 1. The proposed procedure was applied to the speciation of chromium in river water samples. The procedure affords recoveries of 84–115% and a relative standard deviation lower than 4.2%. The analytical results of total chromium in the river water samples under study agreed well with those by electrothermal atomic absorption spectrometry (ET AAS). It is proved that the procedure can be successfully employed as an alternative to the commonly used preconcentration and speciation analytical techniques.  相似文献   

5.
Candir S  Narin I  Soylak M 《Talanta》2008,77(1):289-293
A cloud point extraction (CPE) procedure has been developed for the determination trace amounts of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) ions by using flame atomic absorption spectrometry. The proposed cloud point extraction method was based on cloud point extraction of analyte metal ions without ligand using Tween 80 as surfactant. The surfactant-rich phase was dissolved with 1.0 mL 1.0 mol L−1 HNO3 in methanol to decrease the viscosity. The analytical parameters were investigated such as pH, surfactant concentration, incubation temperature, and sample volume, etc. Accuracy of method was checked analysis by reference material and spiked samples. Developed method was applied to several matrices such as water, food and pharmaceutical samples. The detection limits of proposed method were calculated 2.8, 7.2, 0.4, 1.1, 0.8 and 1.7 μg L−1 for Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II), respectively.  相似文献   

6.
A simple and powerful microextraction technique was used for determination of selenium in water samples using dispersive liquid-liquid microextraction (DLLME) followed by graphite furnace atomic absorption spectrometry (GF AAS). DLLME and simultaneous complex formation was performed with rapid injection of a mixture containing ethanol (disperser solvent), carbon tetrachloride (extraction solvent) and ammonium pyrrolidine dithiocarbamate (APDC, chelating agent) into water sample spiked with selenium. After centrifuging, fine droplets of carbon tetrachloride, which were dispersed among the solution and extracted Se-APDC complex, sediment at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by iridium-modified pyrolitic tube graphite furnace atomic absorption spectrometry. The concentration of selenate was obtained as the difference between the concentration of selenite after and before pre-reduction of selenate to selenite. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of chelating agent were optimized. Under the optimum conditions, the enrichment factor of 70 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 0.1-3 μg L− 1 with detection limit of 0.05 μg L− 1. The relative standard deviation (RSDs) for ten replicate measurements of 2.00 μg L− 1 of selenium was 4.5%. The relative recoveries of selenium in tap, river and sea water samples at spiking level of 2.00 μg L− 1 were 106, 96 and 98%, respectively.  相似文献   

7.
In the present work the performance of different platform and tube geometries and atomization temperatures in graphite furnace atomic absorption spectrometry was investigated, using the determination of Cd in whole blood as an example. Grooved, integrated and fork platforms as well as atomization temperatures between 1200 °C and 2200 °C were investigated in a longitudinally heated graphite atomizer and compared with the performance of a transversely heated furnace. In the longitudinally heated furnace the increase of the atomization temperature in the studied range resulted in an increase of matrix effects for all platform geometries. The integrated platform exhibited slightly lower sensitivity and increased multiplicative interferences in comparison to the other two platform designs. Interference-free Cd determination was possible with all types of platforms and 1200 °C as the atomization temperature as well as with grooved and fork platforms at 1700 °C. On the other hand, lower atomization temperatures resulted in poorer limits of detection, due to the longer integration time needed. No matrix effect was observed at any atomization temperature using the transversely heated atomizer; in addition, limits of detection were better than those observed with the longitudinally heated atomizer. Best values were around 0.02 μg L− 1 with the latter atomizer compared to values around 0.02 μg L− 1 with the former one.  相似文献   

8.
Herein, we present the development of a procedure for the determination of total sulfur in petroleum-derived products (gasoline, kerosene and diesel fuel) employing inductively coupled plasma optical emission spectrometry (ICP OES). For this procedure, samples were prepared as emulsions that were made using concentrated nitric acid, Triton X-100, sample, and ultra pure water in proportions of 5/10/7/78% (v/v), respectively. Sample volumes were weighed because of the density differences, and oxygen was added to the sheat gas entrance of the ICP OES in order to decrease carbon deposition in the torch and to minimize background effects. A Doehlert design was applied as an experimental matrix to investigate the flow ratios of argon (sheat and plasma gas) and oxygen in relation to the signal-to-background ratio. A comparative study among the slopes of the analytical curves built in aqueous media, surfactant/HNO3, and by spike addition for several sample emulsions indicates that a unique solution of surfactant in acidic media can be employed to perform the external calibration for analysis of the emulsions. The developed procedure allows for the determination of the total sulfur content in petroleum derivatives with a limit of detection (LOD) and limit of quantification (LOQ) of 0.72 and 2.4 μg g− 1, respectively. Precision values, expressed as the relative standard deviations (% RSD, n = 10) for 12 and 400 μg g− 1, were 2.2% and 1.3%, respectively. The proposed procedure was applied toward the determination of total sulfur in samples of gasoline, kerosene, and diesel fuel commercialized in the city of Niterói/RJ, Brazil. The accuracy of the proposed method was evaluated by the determination of the total sulfur in three different standard reference materials (SRM): NIST 2723a (sulfur in diesel fuel oil), NIST 1616b (sulfur in kerosene), and NIST 2298 (sulfur in gasoline). The data indicate that the methodology can be successfully applied to these types of samples. Spiking tests, conducted with the analyzed samples, indicate that recoveries are between 97 and 103%.  相似文献   

9.
In the present paper a procedure is proposed for the determination of traces of Cd, Co, Mn and Cr in petroleum industry produced water by inductively coupled plasma optical emission spectrometry. The procedure is based on cloud point extraction of these metals, as their dithizonate complexes, into the surfactant-rich phase of octylphenoxypolyethoxyethanol surfactant (Triton X-114). Extractions were carried out in solutions with salinities between 10‰ and 70‰. Since residual salinity in the surfactant-rich phase caused differences in its transport to the plasma, yttrium was used as an internal standard to correct for this effect. The simultaneous metal extraction procedure was optimized by response surface methodology using a Doehlert design and desirability function. Enhancement factors of 21, 21, 9 and 19, along with limits of quantification of 0.093, 0.20, 0.73 and 1.2 μg L− 1, and precision expressed as relative standard deviation (n = 8, 20.0 μg L− 1) of 5.8, 1.2, 1.7 and 5.7% were obtained for Cd, Co, Mn and Cr, respectively. The accuracy was evaluated by spike recovery tests on the high salinity water samples with salinity of 40 and 63‰.  相似文献   

10.
Sereshti H  Khojeh V  Samadi S 《Talanta》2011,83(3):885-890
In this study, dispersive liquid-liquid microextraction (DLLME) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed for simultaneous preconcentration and trace determination of chromium, copper, nickel and zinc in water samples. Sodium diethyldithiocarbamate (Na-DDTC), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. The effective parameters of DLLME such as volume of extraction and disperser solvents, pH, concentration of salt and concentration of the chelating agent were studied by a (2f−1) fractional factorial design to identify the most important parameters and their interactions. The results showed that concentration of salt and volume of disperser solvent had no effect on the extraction efficiency. In the next step, central composite design was used to obtain optimum levels of effective parameters. The optimal conditions were: volume of extraction solvent, 113 μL; concentration of the chelating agent, 540 mg L−1; and pH, 6.70. The linear dynamic range for Cu, Ni and Zn was 1-1000 μg L−1 and for Cr was 1-750 μg L−1. The correlation coefficient (R2) was higher than 0.993. The limits of detection were 0.23-0.55 μg L−1. The relative standard deviations (RSDs, C = 200 μg L−1, n = 7) were in the range of 2.1-3.8%. The method was successfully applied to determination of Cr, Cu, Ni and Zn in the real water samples and satisfactory relative recoveries (90-99%) were achieved.  相似文献   

11.
A simple method for the determination of mercury in gasoline samples diluted with ethanol by graphite furnace atomic absorption spectrometry (GF AAS) after cold vapor (CV) generation, pre-concentration in a gold column and trapping on a graphite tube is proposed. The methodology is based upon conventional analytical processes that can be performed by any laboratory with a chemical generation and gold amalgamation systems coupled to the atomic absorption spectrometer. The GF AAS temperature was optimized, being the retention, pyrolysis and atomization temperatures, respectively, 100 °C, 150 °C and 800 °C. Gasoline samples were prepared simply by forming a 2-fold diluted solution in ethanol. The mercury formed vapors by reacting the sample with the reducing agent were pre-concentrated in a gold column and further retained on a graphite tube, coated with gold as permanent modifier. Five samples from different gas stations around the UFSC Campus (Florianópolis, Brazil) were analyzed and the Hg concentrations were found to be in the range from 0.40 µg L− 1 to 0.90 µg L− 1. Calibration against aqueous standard solutions in acidic medium was carried out. The standard solutions had about the same viscosity as the gasoline diluted in ethanol. The relative standard deviations were lower than 2.4% for the samples. The limits of detection in the samples were 0.08 and 0.14 µg L− 1, with and without pre-concentration in the gold column, respectively. The accuracy of the method was estimated by applying the recovery test and recovery values between 92 and 100% were obtained. A sample throughput of 4 h− 1 was achieved. Simplicity and high detection capability are some of the qualities of the method.  相似文献   

12.
This present work reports the development and evaluation of a method for the direct determination of manganese in waters extracted during petroleum exploitation by Electrothermal Atomic Absorption Spectrometry (ET AAS) using Ir-W as permanent modifier. These waters, usually called produced waters, contain a wide range of organic and inorganic substances and are characterized by their high salinity. In order to achieve suitable experimental conditions for the method application, studies about the effect of operational variables (chemical modifier, pyrolysis and atomization temperatures) were performed, as well as the establishment of convenient calibration strategy. The best results were verified when the temperatures of pyrolysis and atomization were 1000 °C and 2300 °C, respectively, and using Ir-W as permanent modifier. The results showed that manganese can be determined by the standard addition method or employing external calibration with standard solutions prepared in the same salinity of the samples (with NaCl). Three real samples with salinities varying between 74 and 84‰ were successfully analyzed by the developed procedure. The limits of detection and quantification were 0.24 and 0.80 μg L−1, respectively, in purified water, and 0.34 and 1.1 μg L−1, respectively, in 0.4 mol L−1 NaCl medium (approximately 23‰ salinity).  相似文献   

13.
Solid phase extraction of metal ions using carbon nanotubes   总被引:1,自引:0,他引:1  
The sorption behaviour of carbon nanotubes (CNTs) toward some divalent metal ions such as Cu(II), Co(II), Ni(II), Zn(II), Pb(II), Mn(II) and Cd(II) has been investigated systematically. The affinity order of the metal ions towards CNTs at pH in the range of 7.0-9.0 was: Cu(II) > Pb(II) > Zn(II) > Co(II) > Ni(II) > Cd(II) > Mn(II). The experimental parameters for preconcentration of copper, which exhibits the highest affinity towards carbon nanotubes, on a microcolumn packed with CNTs prior to its determination by flame atomic absorption spectrometry have been investigated. Copper can be quantitatively retained at pH 8.2 from sample volume up to 150 mL and then eluted completely with 0.1 mol L− 1 HNO3. The limit of detection limit for Cu(II) determination with FAAS detection was 2.1 μg L− 1, and the RSD was 3.5% at the 50 μg L− 1 level. Under the optimal conditions for copper enrichment also Zn(II), Pb(II) and Ni(II) could be quantitatively preconcentrated from water samples. The method was validated using a certified reference materials BCR-610 and SRM 1640.  相似文献   

14.
An analytical procedure with improved sensitivity was developed for cyanide determination in natural waters, exploiting the reaction with the complex of Cu(I) with 2,2′-biquinoline 4,4′-dicarboxylic acid (BCA). The flow system was based on the multi-pumping approach and long pathlength spectrophotometry with a flow cell based on a Teflon AF 2400® liquid core waveguide was exploited to increase sensitivity. A linear response was achieved from 5 to 200 μg L−1, with coefficient of variation of 1.5% (n = 10). The detection limit and the sampling rate were 2 μg L−1 (99.7% confidence level), and 22 h−1, respectively. Per determination, 48 ng of Cu(II), 5 μg of ascorbic acid and 0.9 μg of BCA were consumed. As high as 100 mg L−1 thiocyanate, nitrite or sulfite did not affect cyanide determination. Sulfide did not interfere at concentrations lower than 40 and 200 μg L−1 before or after sample pretreatment with hydrogen peroxide. The results for natural waters samples agreed with those obtained by a fluorimetric flow-based procedure at the 95% confidence level. The proposed procedure is then a reliable, fast and environmentally friendly alternative for cyanide determination in natural waters.  相似文献   

15.
The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm; 202.585 nm; 202.586 nm; 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min− 1 sample flow-rate, calibration curves in the 0.1–0.5 mg L− 1 Cu, 0.5–4.0 mg L− 1 Fe, 0.5–4.0 mg L− 1 Mn, 0.2–1.0 mg L− 1 Zn, 10.0–100.0 mg L− 1 Ca, 5.0–40.0 mg L− 1 Mg and 50.0–250.0 mg L− 1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89–103%, 84–107%, 87–103%, 85–105%, 92–106%, 91–114%, 96–114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L− 1 Ca, 0.4 mg L− 1 Mg, 0.4 mg L− 1 K, 7.7 µg L− 1 Cu, 7.7 µg L− 1 Fe, 1.5 µg L− 1 Mn and 5.9 µg L− 1 Zn.  相似文献   

16.
The determination of Mn in diesel, gasoline and naphtha samples at µg L− 1 level by graphite furnace atomic absorption spectrometry, after sample stabilization in a three-component medium (microemulsion) was investigated. Microemulsions were prepared by mixing appropriate volumes of sample, propan-1-ol and nitric acid aqueous solution, and a stable system was immediately and spontaneously formed. After multivariate optimization by central composite design the optimum microemulsion composition as well as the temperature program was defined. In this way, calibration using aqueous analytical solution was possible, since the same sensitivity was observed in the optimized microemulsion media and 0.2% v/v HNO3. The use of modifier was not necessary. Recoveries at the 3 µg L− 1 level using both inorganic and organic Mn standards spiked solutions ranged from 98 to 107% and the limits of detection were 0.6, 0.5 and 0.3 µg L− 1 in the original diesel, gasoline and naphtha samples, respectively. The Mn characteristic mass 3.4 pg. Typical relative standard deviation (n = 5) of 8, 6 and 7% were found for the samples prepared as microemulsions at concentration levels of 1.3, 0.8, and 1.5 µg L− 1, respectively. The total determination cycle lasted 4 min for diesel and 3 min for gasoline and naphtha, equivalent to a sample throughput of 7 h− 1 for duplicate determinations in diesel and 10 h− 1 for duplicate determinations in gasoline and naphtha. Accuracy was also assessed by using other method of analysis (ASTM D 3831-90). No statistically significant differences were found between the results obtained with the proposed method and the reference method in the analysis of real samples.  相似文献   

17.
Bismuth and Sb were evaluated as internal standards (IS) to minimize matrix effects on the direct and simultaneous determination of As, Cu, and Pb in cachaça by graphite furnace atomic absorption spectrometry using W-coated platform plus Pd-Mg(NO3)2 as modifier. For 20 μL injected sample, calibration within the 0.5-10 μg L−1 As, 100-1000 μg L−1 Cu and 0.5-30 μg L−1 Pb intervals were established using the ratios As absorbance to Sb absorbance, Cu absorbance to Bi absorbance and Pb absorbance to Bi absorbance versus analytes concentration, respectively. Typical linear correlations of 0.998, 0.999 and 0.999 were, respectively, obtained. The proposed method was applied for direct determination of As, Cu and Pb in 10 commercial cachaça samples and results were in agreement with those obtained by inductively coupled plasma mass spectrometry at 95% confidence level. The found characteristic masses were 30 pg As, 274 pg Cu and 39 pg Pb. The useful lifetime of the graphite tube was around 760 firings. Recoveries of As, Cu and Pb added to cachaça samples varied, respectively, from 98% to 109%, 97% to 108% and 98% to 104% with internal standards and from 48% to 54%, 53% to 92% and 62% to 97% without internal standards. The limits of detection were 0.13 μg L−1 As, 22 μg L−1 Cu and 0.05 μg L−1 Pb. The relative standard deviations (n = 12) for a spiked sample containing 20 μg L−1 As, Pb and 500 μg L−1 Cu were 1.6%, 1.0%, and 1.8% with IS and 4.3%, 5.2%, and 5.5% without IS.  相似文献   

18.
Baytak S  Zereen F  Arslan Z 《Talanta》2011,84(2):319-323
A trace element preconcentration procedure is described utilizing a minicolumn of yeast (Yamadazyma spartinae) immobilized TiO2 nanoparticles for determination of Cr, Cu, Fe, Mn, Ni and Zn from water samples by inductively coupled plasma atomic emission spectrometry. The elements were quantitatively retained on the column between pH 6 and 8. Elution was made with 5% (v/v) HNO3 solution. Recoveries ranged from 98 ± 2 (Cr) to 100 ± 4 (Zn) for preconcentration of 50 mL multielement solution (50 μg L−1). The column made up of 100 mg sorbent (yeast immobilized TiO2 NP) offers a capacity to preconcentrate up to 500 mL of sample solution to achieve an enrichment factor of 250 with 2 mL of 5% (v/v) HNO3 eluent. The detection limits obtained from preconcentration of 50 mL blank solutions (5%, v/v, HNO3, n = 11) were 0.17, 0.45, 0.25, 0.15, 0.33 and 0.10 μg L−1 for Cr, Cu, Fe, Mn, Ni and Zn, respectively. Relative standard deviation (RSD) for five replicate analyses was better than 5%. The retention of the elements was not affected from up to 500 μg L−1 Na+ and K+ (as chlorides), 100 μg L−1 Ca2+ (as nitrate) and 50 μg L−1 Mg2+ (as sulfate). The method was validated by analysis of freshwater standard reference material (SRM 1643e) and applied to the determination of the elements from tap water and lake water samples.  相似文献   

19.
Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass (m0), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 ± 0.6 pg, compared to 16.1 ± 0.7 pg for the Z5100, and 23.3 ± 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection limits (3 SD) for Al were very similar: 3.0, 3.2, and 4.1 μg L− 1 for the Z5100, 4100ZL, and 3110, respectively. Serum Al method detection limits (3 SD) were 9.8, 6.9, and 7.3 μg L− 1, respectively. Accuracy was assessed using archived serum (and plasma) reference materials from various external quality assessment schemes (EQAS). Values found with all three instruments were within the acceptable EQAS ranges. The data indicate that relatively modest ETAAS instrumentation equipped with continuum background correction is adequate for routine serum Al monitoring.  相似文献   

20.
The usefulness of the secondary line at 252.744 nm and the approach of side pixel registration were evaluated for the development of a method for sequential multi-element determination of Cu, Fe, Mn and Zn in soil extracts by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). The influence of side pixel registration on the sensitivity and linearity was investigated by measuring at wings (248.325, 248.323, 248.321, 248.329, and 248.332 nm) of the main line for Fe at 248.327 nm. For the secondary line at 252.744 nm or side pixel registration at 248.325 nm, main lines for Cu (324.754 nm), Mn (279.482 nm) and Zn (213.875 nm), sample flow-rate of 5.0 mL min−1 and calibration by matrix matching, analytical curves in the 0.2-1.0 mg L−1 Cu, 1.0-20.0 mg L−1 Fe, 0.2-2.0 mg L−1 Mn, 0.1-1.0 mg L−1 Zn ranges were obtained with linear correlations better than 0.998. The proposed method was applied to seven soil samples and two soil reference materials (IAC 277; IAC 280). Results were in agreement at a 95% confidence level (paired t-test) with reference values. Recoveries of analytes added to soil extracts containing 0.15 and 0.30 mg L−1 Cu, 7.0 and 14 mg L−1 Fe, 0.60 and 1.20 mg L−1 Mn, 0.07 and 0.15 mg L−1 Zn, varied within the 94-99, 92-98, 93-101, and 93-103% intervals, respectively. The relative standard deviations (n = 12) were 2.7% (Cu), 1.4% (Fe - 252.744 nm), 5.7% (Fe - 248.325 nm), 3.2% (Mn) and 2.8% (Zn) for an extract containing 0.35 mg L−1 Cu, 14 mg L−1 Fe, 1.1 mg L−1 Mn and 0.12 mg L−1 Zn. Detection limits were 5.4 μg L−1 Cu, 55 μg L−1 Fe (252.744 nm), 147 μg L−1 Fe (248.325 nm), 3.0 μg L−1 Mn and 4.2 μg L−1 Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号