首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A newly isolated bacterial strain, Bacillus sp. MX47, was actively producing extracellular xylanase only in xylan-containing medium. The xylanase was purified from the culture broth by two chromatographic steps. The xylanase had an apparent molecular weight of 26.4?kDa with an NH2-terminal sequence (Gln-Gly-Gly-Asn-Phe) distinct from that of reported proteins, implying it is a novel enzyme. The optimum pH and temperature for xylanase activity were 8.0 and 40?°C, respectively. The enzyme activity was severely inhibited by many divalent metal ions and EDTA at 5?mM. The xylanase was highly specific to beechwood and oat spelt xylan, however, not active on carboxymethyl cellulose (CMC), avicel, pectin, and starch. Analysis of the xylan hydrolysis products by Bacillus sp. MX47 xylanase indicated that it is an endo-??-1,4-xylanase. It hydrolyzed xylan to xylobiose as the end product. The K m and V max values toward beechwood xylan were 3.24?mg?ml?1 and 58.21???mol?min?1?mg?1 protein, respectively.  相似文献   

2.
An endo-β-1,4-xylanase-encoding gene, xyn11NX, was cloned from Nesterenkonia xinjiangensis CCTCC AA001025 and expressed in Escherichia coli. The gene encoded a 192-amino acid polypeptide and a putative 50-amino acid signal peptide. The deduced amino acid sequence exhibited a high degree of similarity with the xylanases from Streptomyces thermocyaneoviolaceus (68%) and Thermobifida fusca (66%) belonging to glycoside hydrolase family 11. After purification to homogeneity, the recombinant Xyn11NX exhibited optimal activity at pH 7.0 and 55 °C and remained stable at weakly acidic to alkaline pH (pH 5.0–11.0). The enzyme was thermostable, retaining more than 80% of the initial activity after incubation at 60 °C for 1 h and more than 40% of the activity at 90 °C for 15 min. The K m and V max values for oat spelt xylan and birchwood xylan were 16.08 mg ml?1 and 45.66 μmol min?1 mg?1 and 9.22 mg ml?1 and 16.05 μmol min?1 mg?1, respectively. The predominant hydrolysis products were xylobiose and xylotriose when using oat spelt xylan or birchwood xylan as substrate.  相似文献   

3.
Thermostable xylanase isoforms T70 and T90 were purified and characterized from the xerophytic Opuntia vulgaris plant species. The enzyme was purified to homogeneity employing three consecutive steps. The purified T70 and T90 isoforms yielded a final specific activity 134.0 and 150.8 U mg?1 protein, respectively. The molecular mass of these isoforms was determined to be 27 kDa. The optimum pH for the T70 and T90 xylanase isoforms was 5.0 and the temperature for optimal activity was 70 and 90 °C, respectively. The Km value of T70 and T90 enzyme isoforms was 3.49, 2.1 mg ml?1, respectively when oat spelt xylan was used as a substrate. The T70 had a Vmax of 10.4 μmol min?1 mg?1, and T90 had a Vmax of 8.9 μmol min?1 mg?1, respectively. In the presence of 10 mM Co2+, and Mn2+ the activity of T70 and T90 isoforms increased, where as 90 % inhibition was noted with of the use 10 mM Hg2+, Cd2+, Cu2+, Zn2+ while partial inhibition was observed in the presence of Fe3+, Ni2+, Ca2+and Mg2+. The T70 and T90 isoforms retained nearly 50 % activity in the presence of 2.0 M urea, while use of 40 mM SDS lowered the activity nearly 38–41 %. The substrate specificity of both T70 and T90 isoforms showed maximum activity for oat spelt xylan. Western blot, immunodiffusion, and in vitro inhibition assays confirmed reactivity of the T90 isoform with polyclonal anti-T90 antibody raised in rabbit, as well as cross-reactivity of the antibody with the T70 xylanase isoform.  相似文献   

4.
A low molecular weight endo-xylanase (EC 3.2.1.8) was purified from an edible mushroom Termitomyces clypeatus grown in submerged medium with oat spelt xylan. Xylanase was purified to apparent homogeneity by ammonium sulfate fractionation and gel filtration chromatography. Its molecular weight was determined by gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 12 kDa. The enzyme was found to be most active at 50°C and pH 5.0, being most stable at pH 6.5. The Km for oat spelt xylan was determined to be 10.4 mg/ml. The specificities of the enzyme was observed to be highly specific towards oat spelt xylan and was inhibited by mercuric chloride (HgCl2), N-bromosuccinimide, and trans-1,2-diaminocyclohexane-N′,N′,N′,N′-tetraacetic acid strongly. The inhibitory action of N-bromosuccinimide on enzyme confirmed the presence of one tryptophan residue in its substrate-binding site. Amino acid analysis for xylanase showed the presence of high amount of hydrophobic serine, glycine, threonine, and alanine residues. The N-terminal sequencing study for the previously purified and characterized 56 kDa xylanolytic amyloglucosidase reveal the presence of 33.30% identity with glucoamylase chain A from Aspergillus awamori. The N-terminal sequence analysis of the present 12 kDa enzyme showed highest similarity (72.22% identity) towards xylanase from Neurospora crassa.  相似文献   

5.
This work reports the first investigation of Remersonia thermophila hemicellulosic hydrolytic enzyme production, with subsequent purification of an extracellular endo-β-1,4-xylanase (RtXyl) and its application in bread making. The research describes RtXyl purification from sorghum-induced submerged liquid cultures of this moderately thermophilic, aerobic, ascomycete fungus. The purified enzyme is a single subunit protein with a molecular mass of 42 kDa and exhibits glycosyl hydrolase family-10-like activity over a broad pH and temperature range. Optimal activity was measured at pH 6.0 and 65 °C respectively, which is suitable for bread making applications. Substrate specificity studies revealed that RtXyl is purely xylanolytic with no side-activities against other plant polysaccharides. The RtXyl catalytic efficiency (K cat/K m) was highest with oats spelt xylan (810.90 mg mL?1 s?1), wheat arabinoxylan (809.52 mg mL?1 s?1) and beechwood xylan (417.40 mg mL?1 s?1) with less efficiency towards insoluble oats spelt xylan (236.40 mg mL?1 s?1). Hydrolysis products analysed by thin layer chromatography yielded a range of xylosaccharides, predominantly xylotriose and xylobiose. RtXyl application in a basic wheat bread recipe at low dosages (0.297 XU/g) showed its suitability to increase loaf volume by 8.0 % compared with the control bread. RtXyl increased loaf softness by 19.6 % while reducing bread staling by 20.4 % up to 4 days of storage.  相似文献   

6.
Jonesia denitrificans BN-13 produces six xylanases: Xyl1, Xyl2, Xyl3, Xyl4, Xyl5, and Xyl6; the Xyl4 was purified and characterized after two consecutive purification steps using ultrafiltration and anion exchange chromatography. The xylanase-specific activity was found to be 77 unit (U)/mg. The molecular weight of the Xyl4 estimated using sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) revealed a monomeric isoenzyme of about 42 kDa. It showed an optimum pH value of 7.0 and a temperature of 50 °C. It was stable at 50 °C for 9.34 h. The enzyme showed to be activated by Mn+2, β-mercaptoethanol, and dithiothreitol (DTT) with a high affinity towards birchwood xylan (with a K m of 1 mg ml?1) and hydrolysis of oat-spelt xylan with a K m of 1.85 mg ml?1. The ability of binding to cellulose and/or xylan was also investigated.  相似文献   

7.
In the present work, the gene xynB2, encoding a ??-xylosidase II of the Glycoside Hydrolase 39 (GH39) family, of Caulobacter crescentus was cloned and successfully overexpressed in Escherichia coli DH10B. The recombinant protein (CcXynB2) was purified using nickel-Sepharose affinity chromatography, with a recovery yield of 75.5?%. CcXynB2 appeared as a single band of 60?kDa on a sodium dodecyl sulfate polyacrylamide gel and was recognized by a specific polyclonal antiserum. The predicted CcXynB2 protein showed a high homology with GH39 ??-xylosidases of the genus Xanthomonas. CcXynB2 exhibited an optimal activity at 55?°C and a pH of 6. CcXynB2 displayed stability at pH values of 4.5?C7.5 for 24?h and thermotolerance up to 50?°C. The K M and V Max values were 9.3?±?0.45?mM and 402?±?19???mol?min?1 for ??-nitrophenyl-??-d-xylopyranoside, respectively. The purified recombinant enzyme efficiently produced reducing sugars from birchwood xylan and sugarcane bagasse fibers pre-treated with a purified xylanase. As few bacterial GH39 family ??-xylosidases have been characterized, this work provides a good contribution to this group of enzymes.  相似文献   

8.
Two xylanases from the crude culture filtrate of Penicillium sclerotiorum were purified to homogeneity by a rapid and efficient procedure, using ion-exchange and molecular exclusion chromatography. Molecular masses estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 23.9 and 33.1 kDa for xylanase I and II, respectively. The native enzymes’ molecular masses of 23.8 and 30.8 kDa were estimated for xylanase I and II, respectively, by molecular exclusion chromatography. Both enzymes are glycoproteins with optimum temperature and pH of 50 °C and pH 2.5 for xylanase I and 55 °C and pH 4.5 for xylanase II. The reducing agents β-mercaptoethanol and dithio-treitol enhanced xylanase activities, while the ions Hg2+ and Cu2+ as well the detergent SDS were strong inhibitors of both enzymes, but xylanase II was stimulated when incubated with Mn2+. The K m value of xylanase I for birchwood xylan and for oat spelt xylan were 6.5 and 2.6 mg mL−1, respectively, whereas the K m values of xylanase II for these substrates were 26.61 and 23.45 mg mL−1. The hydrolysis of oat spelt xylan by xylanase I released xylobiose and larger xylooligosaccharides while xylooligosaccharides with a decreasing polymerization degree up to xylotriose were observed by the action of xylanase II. The present study is among the first works to examine and describe an extracellular, highly acidophilic xylanase, with an unusual optimum pH at 2.5. Previously, only one work described a xylanase with optimum pH 2.0. This novel xylanase showed interesting characteristics for biotechnological process such as feed and food industries.  相似文献   

9.
In this work, the xylanolytic profile of Leucoagaricus gongylophorus was studied, and two extracellular enzymes with xylanolytic activity (XyLg1 and XyLg2) were isolated, purified, and characterized. XyLg1 has a molecular mass of about 38 kDa and pI greater than 4.8. For beechwood xylan substrate, XyLg1 showed an optimum temperature of 40 °C, optimum pH between 8.5 and 10.5, and Km?=?14.7?±?7.6 mg mL?1. Kinetic studies of the XyLg1 using polygalacturonic acid as substrate were developed, and the enzyme showed optimum pH 5.5, optimum temperature between 50 and 60 °C, and Km?=?2.2?±?0.5 mg mL?1. XyLg2 has molecular weight of about 24 kDa and pI less than 4.8, and thus is an acid protein. Parameters such as optimum temperature (70 °C) and pH (4.0), as well as the kinetic parameters (Km?=?7.4?±?2.0 mg mL?1) using beechwood xylan as substrate, were determined for XyLg2. This enzyme has no activity for polygalacturonic acid as substrate. XyLg1 and XyLg2 are the first native xylanases isolated and characterized from L. gongylophorus fungi and, due to their biochemistry and kinetic features, they have potential to be used in biotechnological processes.  相似文献   

10.
A highly thermostable alkaline xylanase was purified to homogeneity from culture supernatant of Bacillus sp. JB 99 using DEAE-Sepharose and Sephadex G-100 gel filtration with 25.7-fold increase in activity and 43.5% recovery. The molecular weight of the purified xylanase was found to be 20 kDA by SDS-PAGE and zymogram analysis. The enzyme was optimally active at 70 °C, pH 8.0 and stable over pH range of 6.0–10.0.The relative activity at 9.0 and 10.0 were 90% and 85% of that of pH 8.0, respectively. The enzyme showed high thermal stability at 60 °C with 95% of its activity after 5 h. The K m and V max of enzyme for oat spelt xylan were 4.8 mg/ml and 218.6 μM min−1 mg−1, respectively. Analysis of N-terminal amino acid sequence revealed that the xylanase belongs to glycosyl hydrolase family 11 from thermoalkalophilic Bacillus sp. with basic pI. Substrate specificity showed a high activity on xylan-containing substrate and cellulase-free nature. The hydrolyzed product pattern of oat spelt xylan on thin-layer chromatography suggested xylanase as an endoxylanase. Due to these properties, xylanase from Bacillus sp. JB 99 was found to be highly compatible for paper and pulp industry.  相似文献   

11.
Production of multiple xylanases, in which each enzyme has a specific characteristic, can be one strategy to achieve the effective hydrolysis of xylan. Three xylanases (xyl 1, xyl 2, and xyl 3) from Aspergillus ochraceus were purified by chromatography using diethylaminoethyl (DEAE) cellulose, Biogel P-60, and Sephadex G-100 columns. These enzymes are glycoproteins of low molecular weight with an optimum temperature at 60 °C. The glycosylation presented is apparently not related to thermostability, since xyl 3 (20 % carbohydrate) was more thermostable than xyl 2 (67 % carbohydrate). Xyl 3 was able to retain most of its activity in a wide range of pH (3.5–8.0), while xyl 1 and xyl 2 presented optimum pH of 6.0. Xyl 1 and xyl 2 were activated by 5 and 10 mM MnCl2 and CoCl2, while xyl 3 was activated by 1 mM of the same compounds. Interestingly, xyl 2 presented high tolerance toward mercury ion. Xylanases from A. ochraceus hydrolyzed xylans of different origins, such as birchwood, oat spelt, larchwood, and eucalyptus (around 90 % or more), except xyl 2 and xyl 3 that hydrolyzed with lesser efficiency eucalyptus (66.7 %) and oat spelt (44.8 %) xylans.  相似文献   

12.
The gene encoding a thermostable β-d-xylosidase (GbtXyl43B) from Geobacillus thermoleovorans IT-08 was cloned in pET30a and expressed in Escherichia coli; additionally, characterization and kinetic analysis of GbtXyl43B were carried out. The gene product was purified to apparent homogeneity showing M r of 72 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme exhibited an optimum temperature and pH of 60 °C and 6.0, respectively. In terms of stability, GbtXyl43B was stable at 60 °C at pH 6.0 for 1 h as well as at pH 6–8 at 4 °C for 24 h. The enzyme had a catalytic efficiency (k cat/K M) of 0.0048?±?0.0010 s?1 mM?1 on p-nitrophenyl-β-d-xylopyranoside substrate. Thin layer chromatography product analysis indicated that GbtXyl43B was exoglycosidase cleaving single xylose units from the nonreducing end of xylan. The activity of GbtXyl43B on insoluble xylan was eightfold higher than on soluble xylan. Bioinformatics analysis showed that GbtXyl43B belonging to glycoside hydrolase family 43 contained carbohydrate-binding module (CBM; residues 15 to 149 forming eight antiparallel β-strands) and catalytic module (residues 157 to 604 forming five-bladed β-propeller fold with predicted catalytic residues to be Asp287 and Glu476). CBM of GbtXyl43B dominated by the Phe residues which grip the carbohydrate is proposed as a novel CBM36 subfamily.  相似文献   

13.
Two xylanases were isolated and purified from crude culture filtrate of Aspergillus sydowii SBS 45 after 9 days of growth on wheat bran containing 0.5% (w/v) birch wood xylan as the carbon source under solid-state fermentation. After a three-step purification scheme involving ammonium sulfate precipitation, gel filtration chromatography (Sephadex G-200), and anion exchange chromatography (DEAE-Sephadex A-50), xylanase I was purified 93.41 times, and xylanase II was purified 77.40 times with yields of 4.49 and 10.46, respectively. Molecular weights of xylanase I and II were 20.1 and 43 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Optimum temperature was 50 degrees C, and optimum pH was 10.0 for both xylanase I and II. The Km value of xylanase I for birch wood xylan was 3.18 mg ml(-1) and for oat spelt xylan 6.45 mg ml(-1), while the Km value of xylanase II for birch wood xylan was 6.51 mg ml(-1) and for oat spelt xylan 7.69 mg ml(-1). Metal ions like Al3+, Ba2+, Ca2+, Na+, and Zn2+ enhanced the activity of xylanase I and II at 10 mM concentration. Among the additives, L-tryptophan enhanced the activity of xylanase I and II at 10-, 20-, and 30-mM concentrations. Both xylanases appeared to be glycoproteins.  相似文献   

14.
Production of the lignocellulose-degrading enzymes endo-1,4-β-glucanase, 1,4-β-glucosidase, cellobiohydrolase, endo-1,4-β-xylanase, 1,4-β-xylosidase, Mn peroxidase, and laccase was characterized in a common wood-rotting fungus Fomes fomentarius, a species able to efficiently decompose dead wood, and compared to the production in eight other fungal species. The main aim of this study was to characterize the 1,4-β-glucosidase produced by F. fomentarius that was produced in high quantities in liquid stationary culture (25.9 U?ml?1), at least threefold compared to other saprotrophic basidiomycetes, such as Rhodocollybia butyracea, Hypholoma fasciculare, Irpex lacteus, Fomitopsis pinicola, Pleurotus ostreatus, Piptoporus betulinus, and Gymnopus sp. (between 0.7 and 7.9 U?ml?1). The 1,4-β-glucosidase enzyme was purified to electrophoretic homogeneity by both anion-exchange and size-exclusion chromatography. A single 1,4-β-glucosidase was found to have an apparent molecular mass of 58 kDa and a pI of 6.7. The enzyme exhibited high thermotolerance with an optimum temperature of 60 °C. Maximal activity was found in the pH range of 4.5–5.0, and K M and V max values were 62 μM and 15.8 μmol?min?1?l?1, respectively, when p-nitrophenylglucoside was used as a substrate. The enzyme was competitively inhibited by glucose with a K i of 3.37 mM. The enzyme also acted on p-nitrophenylxyloside, p-nitrophenylcellobioside, p-nitrophenylgalactoside, and p-nitrophenylmannoside with optimal pH values of 6.0, 3.5, 5.0, and 4.0–6.0, respectively. The combination of relatively low molecular mass and low K M value make the 1,4-β-glucosidase a promising enzyme for biotechnological applications.  相似文献   

15.
XynX of Clostridium thermocellum is a large, multimodular xylanase of 116?kDa. An Escherichia coli transformant carrying the entire xynX produced three active truncated xylanase species of 105, 85, and 64?kDa intracellularly. The Bacillus subtilis WB700 transformant with the xynX, a strain deficient in seven proteases including Vpr, secreted two active truncated xylanase species of 65 and 44?kDa. The B. subtilis WB800 transformant with xynX, a strain deficient in eight proteases including Vpr and WprA, secreted more active enzymes, 8.46?U?ml?1, mostly in the form of 105 and 85?kDa, than the WB700 transformant, 6.93?U?ml?1. This indicates that the additional deletion of wprA enabled the WB800 to secrete XynX in its intact form. B. subtilis WB800 produced more total enzyme activity than E. coli (1,692?±?274 U vs. 141.9?±?27.1 U), and, more importantly, secreted almost all the enzyme activity. The results suggest the potential use of B. subtilis WB800 as a host system for the production of large multimodular proteins.  相似文献   

16.
A xylanase gene, aws-2x, was directly cloned from the genomic DNA of the alkaline wastewater sludge using degenerated PCR and modified TAIL-PCR. The deduced amino acid sequence of AWS-2x shared the highest identity (60%) with the xylanase from Chryseobacterium gleum belonging to the glycosyl hydrolase GH family 10. Recombinant AWS-2x was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 7.5 and 55 °C, maintained more than 50% of maximal activity when assayed at pH 9.0, and was stable over a wide pH range from 4.0 to 11.0. The specific activity of AWS-2x towards hardwood xylan (beechwood and birchwood xylan) was significantly higher than that to cereal xylan (oat spelt xylan and wheat arabinoxylan). These properties make AWS-2x a potential candidate for application in the pulp and paper industry.  相似文献   

17.
The propionyl-CoA dehydrogenase (PACD) gene was firstly cloned from Candida rugosa by the cDNA RACE technique. The 6× His-tagged recombinant PACD gene was expressed in Pichia pastoris GS115 and purified with Ni-NTA affinity chromatography. SDS-PAGE analysis and Western blotting revealed that the molecular mass of the purified PACD was 49 kDa. The results showed that the recombinant protein had the activity of catalyzing propionyl-CoA to acrylyl-CoA. The K m, k cat, and V max values of the purified PACD were calculated to be 40.86 μM, 0.566 s?1 and 0.693 U?mg?1 min?1. The optimal temperature and pH of the purified PACD were 30 °C and 7.0, respectively. The recombinant PACD maintained 76.3%, 30.1%, and 4.3% of its original activity after 2 h incubation in standard buffer at 30, 40, and 50 °C, respectively. Mg2+ had an activating effect on the enzyme, while Mn2+, Ca2+, Zn2+, and Cu2+ had weak inhibition. Since PACD catalyzed the key step (from propionyl-CoA to acrylyl-CoA) in the modified β-oxidation pathway from glucose to 3-hydroxypropionic acid (3-HP), the integration of recombinant PACD could benefit the engineered strains for effective production of 3-HP from the most abundant biomass–sugars.  相似文献   

18.
Penicillium occitanis xylanase 2 expressed with a His-tag in Pichia pastoris, termed PoXyn2, was immobilized on nickel-chelate Eupergit C by covalent coupling reaction with a high immobilization yield up to 93.49 %. Characterization of the immobilized PoXyn2 was further evaluated. The optimum pH was not affected by immobilization, but the immobilized PoXyn2 exhibited more acidic and large optimum pH range (pH 2.0–4.0) than that of the free PoXyn2 (pH 3.0). The free PoXyn2 had an optimum temperature of 50 °C, whereas that of the immobilized enzyme was shifted to 65 °C. Immobilization increased both pH stability and thermostability when compared with the free enzyme. Time courses of the xylooligosaccharides (XOS) produced from corncob xylan indicated that the immobilized enzyme tends to use shorter xylan chains and to produce more xylobiose and xylotriose initially. At the end of 24-h reaction, XOS mixture contained a total of 21.3 and 34.2 % (w/w) of xylobiose and xylotriose with immobilized xylanase and free xylanase, respectively. The resulting XOS could be used as a special nutrient for lactic bacteria.  相似文献   

19.
Humicola insolens produced a new β-glucosidase (BglHi2) under solid-state fermentation. The purified enzyme showed apparent molecular masses of 116 kDa (sodium dodecyl sulfate–polyacrylamide gel electrophoresis) and 404 kDa (gel-filtration), suggesting that it is a homotetramer. Mass spectrometry analysis showed amino acid sequence similarity with a β-glucosidase from Chaetomium thermophilum. Optima of pH and temperature were 5.0 and 65 °C, respectively, and the enzyme was stable for 60 min at 50 °C, maintaining 71 % residual activity after 60 min at 55 °C. BglHi2 hydrolyzed p-nitrophenyl-β-d-glucopyranoside and cellobiose. Cellobiose hydrolysis occurred with high apparent affinity (K M?=?0.24?±?0.01 mmol L?1) and catalytic efficiency (k cat/K M?=?1,304.92?±?53.32 L mmol?1 s?1). The activity was insensitive to Fe+3, Cr+2, Mn+2, Co+2, and Ni2+, and 50–60 % residual activities were retained in the presence of Pb2+, Hg2+, and Cu2+. Mixtures of pure BglHi2 or H. insolens crude extract (CE) with crude extracts from Trichoderma reesei fully hydrolyzed Whatman no. 1 paper. Mixtures of H. insolens CE with T. reesei CE or Celluclast 1.5 L fully hydrolyzed untreated printed office paper, napkin, and magazine papers after 24–48 h, and untreated cardboard was hydrolyzed by a H. insolens CE/T. reesei CE mixture with 100 % glucose yield. Data revealed the good potential of BglHi2 for the hydrolysis of waste papers, promising feedstocks for cellulosic ethanol production.  相似文献   

20.
Absolute gas phase Sn concentrations in the range 1 × 1013 ? [Sn] ? 1 × 1014 ml?1 have been determined utilizing a technique based on the rapid (at T ? 900 K) titration reaction Sn + NO2 → SnO + NO (k(900–1100 K) ≈ 1 × 10?10 ml molecule?1 s?1) and the chemiluminescent indicator reaction Sn + N2O → SnO + N2 + hv(SnO a3 Σ-X1Σ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号