首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Process development, optimization and robustness analysis for chromatographic separation are often entirely based on experimental work and generic knowledge. This paper describes a model-based approach that can be used to gain process knowledge and assist in the robustness analysis of an ion-exchange chromatography step using a model-based approach. A kinetic dispersive model, where the steric mass action model accounts for the adsorption is used to describe column performance. Model calibration is based solely on gradient elution experiments at different gradients, flow rates, pH and column loads. The position and shape of the peaks provide enough information to calibrate the model and thus single-component experiments can be avoided. The model is calibrated to the experiments and the confidence intervals for the estimated parameters are used to account for the model error throughout the analysis. The model is used to predict the result of a robustness analysis conducted as a factorial experiment and to design a robust pooling approach. The confidence intervals are used in a "worst case" approach where the parameters for the components are set at the edge of their confidence intervals to create a worst case for the removal of impurities at each point in the factorial experiment. The pooling limit was changed to ensure product quality at every point in the factorial analysis. The predicted purities and yields were compared to the experimental results to ensure that the prediction intervals cover the experimental results.  相似文献   

2.
This paper presents a methodology to gain process knowledge and assist in the robustness analysis of an ion-exchange step in a protein purification process using a model-based approach. Factorial experimental design is common practice in industry today to obtain robustness characterization of unit operations with respect to variations in process parameters. This work aims at providing a better insight into what process variations affect quality and to further reduce the experimental work to the regions of process variation that are of most interest. This methodology also greatly increases the ability to predict process performance and promotes process understanding. The model calibration part of the methodology involves three consecutive steps to calibrate a steric mass action (SMA) ion-exchange chromatography model. Firstly, a number of gradient elution experiments are performed. Secondly, experimental breakthrough curves have to be generated for the proteins if the adsorption capacity of the medium for each component is not known. Thirdly, a multi-component loading experiment is performed to calibrate the multi-component effects that cannot be determined from the single-component experiments. The separation process studied in this work is the separation of polyclonal IgG from a mixture containing IgG, myoglobin and BSA. The calibrated model is used to simulate six process variations in a full factorial experiment. The results of the simulations provide information about the importance of the different process variations and the simulations are also used to determine the crucial points for the process parameter variations. The methodology can be used to assist in the robustness analysis normally performed in the pharmaceutical industry today as it is able to predict the impact on process performance resulting from variations in salt concentration, column load, protein concentration and flow rate.  相似文献   

3.
This paper introduces a design of experiments (DOE) approach for method optimisation in hydrophilic interaction chromatography (HILIC). An optimisation strategy for the separation of acetylsalicylic acid, its major impurity salicylic acid and ascorbic acid in pharmaceutical formulations by HILIC is presented, with the aid of response surface methodology (RSM) and Derringer's desirability function. A Box-Behnken experimental design was used to build the mathematical models and then to choose the significant parameters for the optimisation by simultaneously taking both resolution and retention time as the responses. The refined model had a satisfactory coefficient (R2>0.92, n=27). The four independent variables studied simultaneously were: acetonitrile content of the mobile phase, pH and concentration of buffer and column temperature each at three levels. Of these, the concentration of buffer and its cross-product with pH had a significant, positive influence on all studied responses. For the test compounds, the best separation conditions were: acetonitrile/22 mM ammonium acetate, pH 4.4 (82:18, v/v) as the mobile phase and column temperature of 28°C. The methodology also captured the interaction between variables which enabled exploration of the retention mechanism involved. It would be inferred that the retention is governed by a compromise between hydrophilic partitioning and ionic interaction. The optimised method was further validated according to the ICH guidelines with respect to linearity and range, precision, accuracy, specificity and sensitivity. The robustness of the method was also determined and confirmed by overlying counter plots of responses which were derived from the experimental design utilised for method optimisation.  相似文献   

4.
An hydrophobic interaction chromatography step was developed for the large-scale production of an Fc-fusion biologic. Two abundant product-related impurities were separated from the active monomer using a Butyl resin and a simple step-wash and step-elution strategy. Capacity and resolution of the HIC step was optimal when sodium sulfate was employed as the lyotropic salt and pore size of the Butyl resin was 750A. Factorial analysis identified critical parameters for the Butyl chromatography and an operating window capable of delivering high product quality and yield over a broad column loading range.  相似文献   

5.
Chromatography is an essential downstream processing step in the production of biopharmaceuticals. Here we present an approach to chromatography scale-up using scale-down experimentation integrated with general rate modelling. This type of modelling takes account all contributions to the mass transfer kinetics providing process understanding. The model is calibrated using a 2.5 cm height, 1 ml column and used to predict chromatograms for 20 cm height columns from 40 ml to 160 L volume. Simulations were found to be in good agreement with experimental results. The envisaged approach could potentially reduce the number of experiments, shorten development time and reduce costs.  相似文献   

6.
A novel approach to multivariate evaluation of separation electrolytes for micellar electrokinetic chromatography is presented. An initial screening of the experimental parameters is performed using a Plackett-Burman design. Significant parameters are further evaluated using full factorial designs. The total resolution of the separation is calculated and used as response. The proposed scheme has been applied to the optimisation of the separation of phenols and the chiral separation of (+)-1-(9-anthryl)-2-propyl chloroformate-derivatized amino acids. A total of eight experimental parameters were evaluated and optimal conditions found in less than 48 experiments.  相似文献   

7.
For the investigation of a diol phase (Inertsil Diol column) in hydrophilic interaction chromatography, urea, sucrose and glycine were used as test compounds. The chromatographic conditions were investigated for optimal column efficiency. The column temperature used in common reversed-phase liquid chromatography could also be used for the separation and the flow-rate should be adjusted to 0.3-0.5 ml/min to optimize column efficiency. It is suggested that the velocity of the hydrophilic interaction is slower than the hydrophobic interaction in RPLC. The addition of trifluoroacetic acid is effective for the retention of glycine, but ineffective for urea and sucrose. The diol phase exhibited sufficient chemical stability even if exposed to water in high percentage, and could be applied with isocratic elution for the separation/analysis of amino acids and glucose.  相似文献   

8.
A previously reported eight-parameter mechanistic model [Part I of this work, J. Chromatogr. A 1163 (2007) 49] was applied to optimise the separation of 11 ionisable compounds (nine diuretics and two beta-blockers), considering solvent content, temperature and pH as experimental factors. The data from 21 experiments, arranged in a central composite design, were used to model the retention. Local models were used to predict efficiency and peak asymmetry. The optimisation strategy, based on the use of peak purity as chromatographic objective function and derived concepts, was able to find the most suitable experimental conditions yielding full resolution in reasonable analysis times. It also allowed a detailed inspection of the separation capability of the studied factors, and of the consequences of the shifts in the protonation constants originated by changes in solvent content and temperature. The size of the resolution structures suggested that the ranked importance of the factors was pH, organic solvent and temperature, giving rise to relatively narrow domains of full resolution. The three factors were found, however, worthwhile in the optimisation of selectivity. Predicted optimal conditions corresponding to two different optimal resolution regions were verified experimentally. In spite of the difficulties associated to the use of pH as optimisation factor, satisfactory agreement was found in both cases.  相似文献   

9.
An alternative method to determine the interstitial void volume and the external porosity inside a packed or a monolithic column was developed. The method is based on the total blocking of the mesopores of a porous support by filling them with a hydrophobic solvent. The strong interaction of the latter with the hydrophobic coating inside the pores keeps the solvent in position during the subsequent measurements. With the pores of the stationary phase material completely inaccessible for any type of polar molecules, the method allows to perform interstitial void measurements using small molecular weight (MW) molecules instead of the large MW molecules that need to be used in inverse size exclusion chromatography (ISEC). These small MW molecules are able to penetrate every corner of the interstitial volume and therefore lead to a very accurate determination of the external porosity. Since only one type of molecules needs to be injected, the often troublesome regression analysis needed in ISEC is omitted as well. In the present contribution, the method has been applied to a packed bed and a monolithic column to investigate the optimal conditions of flow velocity, liquid compositions, and unretained marker selection. The robustness and the repeatability of the method are discussed as well.  相似文献   

10.
The packing quality of chromatography columns used for the purification of protein therapeutics is routinely monitored to ensure consistent and reproducible performance. In this work, we used established chromatography models to determine the effect of column packing quality and fluid residence time on the separation of protein therapeutic monomer and aggregate species using a hydrophobic interaction chromatography adsorbent (Phenyl Sepharose Fast Flow). The relationship between the number of theoretical plates, fluid residence time, and column separation performance was quantified using modeling simulations. The simulations showed the separation depended on both the fluid residence time and the number of theoretical plates. However, when the number of theoretical plates was increased to ≥150, the simulations predicted that the separation performance of the column was not significantly improved. The approach described here could be used as a method to quantify acceptable height equivalent of a theoretical plate values for columns, and serve as a tool to understand how column packing quality impacts a given chromatographic separation prior to column scale-up, as well as during the monitoring of column lifetime in the manufacturing of large scale protein therapeutics.  相似文献   

11.
Electrophoretic mobility of various analytes can be modeled and thus also predicted using artificial neural networks (ANNs) evaluating experiments done according to a suitable experimental design. In contrast to response surfaces modeling which can be used to predict optimal separation conditions, ANNs combined with experimental design were shown to be efficient for modeling and prediction of optimal separation conditions, while no explicit model and any knowledge of the physicochemical constants is needed. Methodology has been developed and demonstrated on separation of inorganic cations and organic oximes while various additives (methanol, complexation agent), pH or buffer concentration were followed. In our approach proposed the number of experiments necessary to find optimal separation conditions can be reduced significantly.  相似文献   

12.
Adsorption of proteins on surfaces of hydrophobic interaction chromatography media is at least a two-stage process. Application of pure protein pulses (bovine serum albumin and beta-lactoglobulin) to hydrophobic interaction chromatography media yielded two chromatographic peaks at low salt concentrations. At these salt concentrations, the adsorption process is affected by a second reaction, which can be interpreted as protein spreading or partial unfolding of the protein. The kinetic constants of the spreading reaction were derived from pulse response experiments at different residence times and varying concentrations by applying a modified adsorption model considering conformational changes. The obtained parameters were used to calculate uptake and breakthrough curves for spreading proteins. Although these parameters were determined at low saturation of the column, predictions of overloaded situations could match the experimental runs satisfactorily. Our findings suggest that proteins which are sensitive to conformational changes should be loaded at high salt concentrations in order to accelerate the adsorption reaction and to obtain steeper breakthrough curves.  相似文献   

13.
The separation process in capillary micellar electrochromatography (MEKC) can be modelled using artificial neural networks (ANNs) and optimisation of MEKC methods can be facilitated by combining ANNs with experimental design. ANNs have shown attractive possibilities for non-linear modelling of response surfaces in MEKC and it was demonstrated that by combining ANN modelling with experimental design, the number of experiments necessary to search and find optimal separation conditions can be reduced significantly. A new general approach for computer-aided optimisation in MEKC has been proposed which, because of its general validity, can also be applied in other separation techniques.  相似文献   

14.
Reaction optimisation and understanding is fundamental for process development and is achieved using a variety of techniques. This paper explores the use of self-optimisation and experimental design as a tandem approach to reaction optimisation. A Claisen-Schmidt condensation was optimised using a branch and fit minimising algorithm, with the resulting data being used to fit a response surface model. The model was then applied to find new responses for different metrics, highlighting the most important for process development purposes.  相似文献   

15.
In this study, 3‐diethylamino‐1‐propyne was covalently bonded to the azide‐silica by a click reaction to obtain a novel dual‐function mixed‐mode chromatography stationary phase for protein separation with a ligand containing tertiary amine and two ethyl groups capable of electrostatic and hydrophobic interaction functionalities, which can display hydrophobic interaction chromatography character in a high‐salt‐concentration mobile phase and weak anion exchange character in a low‐salt‐concentration mobile phase employed for protein separation. As a result, it can be employed to separate proteins with weak anion exchange and hydrophobic interaction modes, respectively. The resolution and selectivity of the stationary phase were evaluated in both hydrophobic interaction and ion exchange modes with standard proteins, respectively, which can be comparable to that of conventional weak anion exchange and hydrophobic interaction chromatography columns. Therefore, the synthesized weak anion exchange/hydrophobic interaction dual‐function mixed‐mode chromatography column can be used to replace two corresponding conventional weak anion exchange and hydrophobic interaction chromatography columns to separate proteins. Based on this mixed‐mode chromatography stationary phase, a new off‐line two‐dimensional liquid chromatography technology using only a single dual‐function mixed‐mode chromatography column was developed. Nine kinds of tested proteins can be separated completely using the developed method within 2.0 h.  相似文献   

16.
Literature lists a number of counter-current chromatography (CCC) models that can predict the retention time and to a certain extent the peak width of a solute eluting from a CCC column. The approach described in this paper distinguishes itself from previous reports by relating all model parameters directly to column dimensions and experimental settings. Most importantly, this model can predict a chromatogram from scratch without resorting to traditional calibration using empirical values. The model validation with experimental results obtained across a range of CCC instruments demonstrated that the solute retention time, peak width, and peak resolution could be predicted within reasonable accuracy. Additionally, the effect of several process parameters, such as mobile phase flow rate, rotational speed of the column or β-value, showed that the model is robust and applicable to a wide range of CCC instruments. Overall, this model proved to be a useful tool for parameter estimation and, most significantly, separation optimisation.  相似文献   

17.
This work attempts to obtain the calibration curves of two different size exclusion chromatography (SEC) columns operating with 1-methyl-2-pyrrolidinone (NMP) as eluent by using various standards. Polystyrene (PS) and polymethylmethacrylate (PMMA) standards were used for obtaining calibration curves, and checked against polysaccharide (PSAC) standards, some small aromatic polycyclic standards and miscellaneous polymers. Polystyrenes and polymethylmethacrylates gave identical calibrations while polysaccharides and miscellaneous polymers lay within 1 or 2 min of the polystyrene calibration. Small molecules of mass less than 1000 units lay on or near to the polystyrene calibration lines, with a shift to late elution for the smallest molecules. This shift may be caused by the interaction with the column packing. A sample has been examined by analytical size exclusion chromatography, which was calibrated using polystyrene and polymethylmethacrylate standards. Molecular mass (MM) distributions of the sample have been examined in terms of these calibrations.  相似文献   

18.
A systematic approach using a mathematical model as an alternative to time-consuming empirical optimisation of a supercritical-fluid extraction (SFE) procedure is presented. The model was applied to the extraction of 15 polycyclic aromatic hydrocarbons (PAH). The selected fat-containing matrix is the earthworm used in ecotoxicological absorption studies. Settings for optimal recovery were established for the important parameters (temperature, pressure, amount of trapping sorbent, flow, and dynamic extraction time) using a D-optimal experimental design (including quadratic terms and interactions). The recoveries were modelled using a two sigmoid-model with parameters for each of the individual PAH. The main objective was to optimise the conditions for 15 PAH congeners by maximisation of the lowest recovery. The results show that for some parameters, e.g. the amount of sorbent material, optimal conditions are identical for all PAH. For other parameters, e.g. extraction time, the optimum is PAH dependent. The advantage of this optimisation procedure is that, within three days of analysis (73 experiments), optimised extraction conditions for the extraction of the set of 15 PAH were found but also optimum conditions for specific subsets can be extracted from the collected data for specific subsets.  相似文献   

19.
In-process control (IPC) is an important task during chemical syntheses in pharmaceutical industry. Despite the fact that each chemical reaction is unique, the most common analytical technique used for IPC analysis is high performance liquid chromatography (HPLC). Today, the so-called “Quality by Design” (QbD) principle is often being applied rather than “Trial and Error” approach for HPLC method development. The QbD approach requires only for a very few experimental measurements to find the appropriate stationary phase and optimal chromatographic conditions such as the composition of mobile phase, gradient steepness or time (tG), temperature (T), and mobile phase pH. In this study, the applicability of a multifactorial liquid chromatographic optimization software was studied in an extended knowledge space. Using state-of-the-art ultra-high performance liquid chromatography (UHPLC), the analysis time can significantly be shortened. By using UHPLC, it is possible to analyse the composition of the reaction mixture within few minutes. In this work, a mixture of route of synthesis of apixaban was analysed on short narrow bore column (50 × 2.1 mm, packed with sub-2 µm particles) resulting in short analysis time. The aim of the study was to cover a relatively narrow range of method parameters (tG, T, pH) in order to find a robust working point (zone). The results of the virtual (modeled) robustness testing were systematically compared to experimental measurements and Design of Experiments (DoE) based predictions.  相似文献   

20.
Guillaume YC  Peyrin E 《Talanta》2000,51(3):579-586
A chemometric methodology is proposed to study the separation of seven p-hydroxybenzoic esters in reversed phase liquid chromatography (RPLC). Fifteen experiments were found to be necessary to find a mathematical model which linked a novel chromatographic response function (CRF) with the column temperature, the water fraction in the mobile phase and its flow rate. The CRF optimum was determined using a new algorithm based on Glover's taboo search (TS). A flow-rate of 0.9 ml min(-1) with a water fraction of 0.64 in the ACN-water mixture and a column temperature of 10 degrees C gave the most efficient separation conditions. The usefulness of TS was compared with the pure random search (PRS) and simplex search (SS). As demonstrated by calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimisation, this procedure is generally applicable, easy to implement, derivative free, conceptually simple and could be used in the future for much more complex optimisation problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号