首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The noise performance of an InP/InGaAs Superlattice Avalanche Photodiode (SL-APD) has been studied theoretically to examine its suitability as a detector in optical receiver units. The results indicate that the device which has a very large gain-bandwidth product (450 GHz) provides a high receiver sensitivity compared to conventional APD. The device also exhibits a very low value of excess noise factor which results in a high value of signal-to-noise ratio. The SL-APD is expected to find useful applications as a high sensitivity photodetector in long-haul fibre optic communication systems. For a digital system, the device exhibits a very low value of bit-error rate (BER) even at moderate gain.  相似文献   

2.
In this paper, the optical properties in finite size tilted and engineered one dimensional coupled resonator optical waveguide have been investigated. The large dependence of the optical transmittance, dispersion parameter and its higher order slope such as transmittance group delay, third order dispersion and intrinsic waveguide induced loss on the oblique incidence and fraction factor, as the ratio of the optical thicknesses of two adjacent layers, have been studied. Our results showed that as a consequence of changing the fraction factor, at normal incidence, photonic band gap zone, flat portion of third order dispersion curve and maximum magnitude of the transmission group delay can be tuned in long range of wavelength (red shift) slightly. Despite of slight tuning the optical properties in one dimensional coupled resonator optical waveguide by changing the fraction factor, incidence angle has a significant large magnitude of tunability in the overall region of operational wavelength. This fact yields us by changing the incidence from 30 to 60, the operational wavelength can be tuned between two main optical communication windows, while by changing the fraction factor, dispersion and its higher order can be fine tuned in each of optical communication windows which are very useful in wavelength division multiplexing systems and planar lightwave circuits.  相似文献   

3.
Switching light is one of the most fundamental functions of an optical circuit. As such, optical switches are a major research topic in photonics, and many types of switches have been realized. Most optical switches operate by imposing a phase shift between two sections of the device to direct light from one port to another, or to switch it on and off, the major constraint being that typical refractive index changes are very small. Conventional solutions address this issue by making long devices, thus increasing the footprint, or by using resonant enhancement, thus reducing the bandwidth. We present a slow-light-enhanced optical switch that is 36 times shorter than a conventional device for the same refractive index change and has a switching length of 5.2 microm.  相似文献   

4.
The rapidly evolving demands of optical communications and optical switching systems have created a new market for high capacity all-optical beam steering and deflecting techniques. One technology potentially capable of realizing such systems uses the multistep micro-blazed grating optical beam deflectors based on binary and multiple-phase modulation methods. The micro-optical element has been fabricated by introducing very large scale integration (VLSI), stepping photolithography and reactive ion etching (RIE), which can realize beam steering, deflecting, splitting, and switching in free space, and its diffraction properties are determined by the blazed-grating parameters, such as the number of steps, grating depth, grating period, as well as blazed profile. The theoretical analysis and primarily experimental result show that this phase-type element has the advantages of high diffractive efficiency, low cross talk, small feature size, and high reliability due to nonmechanical beam steering without any moving parts. Hence it is ideally suited to applications in optical communication and optical interconnection network.  相似文献   

5.
Han YG  Choi SM  Kim SH  Lee SB 《Optics letters》2003,28(21):2034-2036
A novel wavelength-selective optical switching device based on multiply cascaded long-period fiber gratings is proposed and experimentally demonstrated. The on and off states of each channel in the optical switching device can be effectively switched by voltage-controllable coil heaters. The device has advantages of multichannel operation, multiwavelength selectivity, and bandwidth controllability. It can be useful for applications in multiwavelength operational signal gating, optical switching devices, routers, and multiplexers in optical communication systems.  相似文献   

6.
This tutorial focuses on devices and technologies that are part of laser-based visible light communication(VLC)systems. Laser-based VLC systems have advantages over their light-emitting-diode-based counterparts, including having high transmission speed and long transmission distance. We summarize terminologies related to laser-based solid-state lighting and VLC, and further review the advances in device design and performance.The high-speed modulation characteristics of laser diodes and superluminescent diodes and the on-chip integration of optoelectronic components in the visible color regime, such as the high-speed integrated photodetector,are introduced. The modulation technology for laser-based white light communication systems and the challenges for future development are then discussed.  相似文献   

7.
The mid-wave IR (MWIR) spectral band extending from 3 to 5 microns is considered to be a low loss atmospheric window. The MWIR wavelengths are eye safe and are attractive for several free-space applications including remote sensing of chemical and biological species, hard target imaging, range finding, target illumination, and free-space communications. Due to the nature of light-matter interaction characteristics, MWIR wavelength based systems can provide unique advantages over other spectral bands for these applications. The MWIR wavelengths are found to effectively penetrate natural and anthropogenic obscurants. Consequently, MWIR systems offer increased range performance at reduced power levels. Free-space, line-of-sight optical communication links for terrestrial as well as space based platforms using MWIR wavelengths can be designed to operate under low visibility conditions. Combined with high-bandwidth, eye-safe, covert and jam proof features, a MWIR wavelength based optical communication link could play a vital role in hostile environments. A free-space optical communication link basically consists of a transmitter, a receiver and a scheme for directing the beam towards a target. Coherent radiation in the MWIR spectral band can be generated using various types of lasers and nonlinear optical devices. Traditional modulation techniques are applicable to these optical sources. Novel detector and other subcomponent technologies with enhanced characteristics for a MWIR based system are advancing. Depending on the transmitter beam characteristics, atmospheric conditions may adversely influence the beam propagation and thereby increasing the bit error rate. For satisfactory transmission over a given range, the influence of atmosphere on beam propagation has to be analyzed. In this chapter, salient features of atmospheric modeling required for wavelength selection and performance prediction is presented. Potential optical sources and detectors for building a practical MWIR communication link are surveyed. As an illustration, the design configuration and experimental results of a recently demonstrated free-space, obscurant penetrating optical data communication link suitable for battlefield applications is discussed. In this case, the MWIR wavelength was derived using an all solid-state, compact, optical parametric oscillator device. With this device, weapon codes pertaining to small and large weapon platforms were transmitted over a range of 5 km. Furthermore, image transmission through light fog, accomplished using this hardware, is also presented. Advances in source and detector technologies are contributing to the development of cost effective systems compatible with various platforms requirements. In coming years, MWIR wavelengths are anticipated to play a vital role in various human endeavors.  相似文献   

8.
Optics has already been established as a potential candidate for conduction of digital logic and arithmetic operation in communication and computation processes. Different proposals have been reported by different scientists to make optics meaningful signal for conduction of the above operations. As it is well known that the memory device is a basic building block of any computation and communication system hence developing systems such as digital memory, multivibrator, etc. are the obvious requirements for optical communication as well as computation systems also. As the role of switching devices is an essential part of any processing system, many proposals were seen where all-optical switches using the combination of linear and non-linear materials were used, to implement the logic elements.In this context, the authors propose a new scheme for implementation of an all-optical mono-stable multivibrator using the non-linear material based switches and high refractive index based material. This multivibrator can generate a time pulse of definite width.  相似文献   

9.
A -type two-electrode system on a Ti diffused optical waveguide in LiNbO3 has been studied in symmetrical and in asymmetrical operation regimes. In the first case the device acts as a beam splitter or focuser, depending on the polarity of the applied voltage. In the second case the device acts as a scanner. The driving voltage is relatively low. Possible applications are optical communication systems and optical processing of information.  相似文献   

10.
In optical quantum communication, quantum state measurement is necessary. This paper proposes a new technique for realization of polarization filter based on planar lightwave circuit (PLC). This filter is used for quantum state discriminator in quantum communication and also as a Bell-state analyzer in quantum repeater. Electro-optics interferometer has been used in design and implementation of polarization filter. We use lithium niobate as a wafer material and Ti:LiNbO3 for waveguide. Two directional couplers have been used in this device. The length and spacing of these directional couplers have been designed so that each polarization is routed in specific output. The proposed device has one input and two outputs. If polarization of the input photon is vertical, then this photon will appear in output 1, otherwise if the input photon has horizontal polarization, it appears in output 2. For vertical polarization input, the power overlaps integral (POI) shows that isolation between two outputs is 14.96 dB. As to horizontal polarization input, the isolation between two outputs is 13.8 dB. The designed polarization filter has length of 33 mm and width of 60 μm. This device is very suitable for use in integrated optics.  相似文献   

11.
Optical adder/subtractor for two four-bit frequency encoded binary numbers are proposed and designed based on four wave mixing, add drop multiplexing and frequency conversion in semiconductor optical amplifier. The input bits and the control input are intensity-modulated signal of two specific frequencies suitable for optical communication in the C band of wavelength. The device can distinguish negative and positive results and controlled operation are most promising in this proposal. The use of semiconductor optical amplifiers along with frequency encoding makes the system very fast and useful for future optical communication and computation systems.  相似文献   

12.
目前, 光无线通信的质量主要受到大气信道环境的制约, 大气信道中混沌介质与湍流的强烈扰动使得通信质量很差, 甚至通信中断. 提出了一种面到点的光无线通信机理: 利用面阵各单元的光信号在混沌介质中传输通道的空间非相干性, 通过桶探测器收集通过混沌介质的光信号的能量和, 平均各传输通道的交叉干扰, 降低混沌介质对光无线通信的影响; 利用随机噪声与随机编码的空间非相干性, 经过二阶相关运算, 构建新的信号传输方程, 减弱大气湍流及背景光对信号解码的干扰, 使得接收端并不需要窄带光学滤波器. 数值仿真和演示实验表明, 该光无线通信机理在混沌与湍流大气中的误码率为10-4-10-2, 能够实现复杂大气环境中的光通信, 在军事、抢险救援等方面具有重要应用价值.  相似文献   

13.
With rapid growth of the Internet, bandwidth demand for data traffic is continuing to explode. In addition, emerging and future applications are becoming more and more network centric. With the proliferation of data communication platforms and data-intensive applications (e.g. cloud computing), high-bandwidth materials such as video clips dominating the Internet, and social networking tools, a networking technology is very desirable which can scale the Internet’s capability (particularly its bandwidth) by two to three orders of magnitude. As the limits of Moore’s law are approached, optical mesh networks based on wavelength-division multiplexing (WDM) have the ability to satisfy the large- and scalable-bandwidth requirements of our future backbone telecommunication networks. In addition, this trend is also affecting other special-purpose systems in applications such as mobile platforms, automobiles, aircraft, ships, tanks, and micro unmanned air vehicles (UAVs) which are becoming independent systems roaming the sky while sensing data, processing, making decisions, and even communicating and networking with other heterogeneous systems. Recently, WDM optical technologies have seen advances in its transmission speeds, switching technologies, routing protocols, and control systems. Such advances have made WDM optical technology an appealing choice for the design of future Internet architectures. Along these lines, scientists across the entire spectrum of the network architectures from physical layer to applications have been working on developing devices and communication protocols which can take full advantage of the rapid advances in WDM technology. Nevertheless, the focus has always been on large-scale telecommunication networks that span hundreds and even thousands of miles. Given these advances, we investigate the vision and applicability of integrating the traditionally large-scale WDM optical networks into miniaturized mobile platforms such as UAVs. We explain the benefits of WDM optical technology for these applications. We also describe some of the limitations of WDM optical networks as the size of a vehicle gets smaller, such as in micro-UAVs, and study the miniaturization and communication system limitations in such environments.  相似文献   

14.
王尘  许怡红  李成  林海军 《物理学报》2017,66(19):198502-198502
本文报道了在SOI衬底上外延高质量单晶Ge薄膜并制备高性能不同尺寸Ge PIN波导光电探测器.通过采用原子力显微镜、X射线衍射、拉曼散射光谱表征外延Ge薄膜的表面形貌、晶体质量以及应变参数,结果显示外延Ge薄膜中存在约0.2%左右的张应变,且表面平整,粗糙度为1.12 nm.此外,通过暗电流、光响应度以及3 dB带宽的测试来研究波导探测器的性能,结果表明尺寸为4μm×20μm波导探测器在-1 V的反向偏压下暗电流密度低至75 mA/cm~2,在1.55μm波长处的响应度为0.58 A/W,在-2 V的反向偏压下的3 dB带宽为5.5 GHz.  相似文献   

15.
新型聚合物分散液晶材料研制的电控体全息光栅   总被引:16,自引:3,他引:13  
报道了聚合物分散液晶材料全息光栅元件的研制,并研究了聚合物分散液晶材料光栅的衍射特性及电控开关特性。该光栅结合了聚合物分散液晶材料的电控光开关特性和全息光栅的优点,在光通信器件、可调窗口、液晶显示等领域具有广泛的应用前景和巨大的潜在生产力。  相似文献   

16.
The recent progress of coherent optical fibre communication systems is reviewed. System constituent technologies, such as coherent optical modulation-demodulation, optical direct amplification for repeaters and single polarization fibre transmission are outlined. Several important optical device technologies, such as frequency stabilization of semiconductor lasers, AM and FM quantum noise and their reduction, and integrated opto-electronic devices, are also described. Finally, on the basis of the current state of the art in these technological areas, the expected system performance and future problems are discussed.  相似文献   

17.
The sensitivity of a high-frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter-wave transmission-line optical axis. We quantify the performance of this device with nitroxide spin label spectra in both a lossy aqueous solution and a low-loss solid-state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems, in particular, are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high-frequency ESR, e.g., to the study of biological systems at physiological conditions. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in the signal-to-noise ratio at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples.  相似文献   

18.
In this paper the particle swarm optimization (PSO) and least mean square (LMS) algorithms are comparatively studied to estimate the optical communication channel parameters for radio over fiber systems. It is observed that especially in low noise one tap optical channels, the convergence of LMS algorithm is approximately same with PSO algorithm. On the other hand, as a communication medium, selecting high noisy fiber optical channels or free space optical channels; PSO reaches better mean square error values. The computational complexity which is one of the most important features for optimization algorithms has also been taken into account.  相似文献   

19.
In the field of optical computing and parallel information processing, several number systems have been used for different arithmetic and algebraic operations. Therefore an efficient conversion scheme from one number system to another is very important. Modified trinary number (MTN) has already taken a significant role towards carry and borrow free arithmetic operations. In this communication, we propose a tree-net architecture based all optical conversion scheme from binary number to its MTN form. Optical switch using nonlinear material (NLM) plays an important role.  相似文献   

20.
MEMS与MEMS光开关   总被引:10,自引:2,他引:8       下载免费PDF全文
微机电系统(MEMS)技术是一种新型制造技术,在光通信的发展中得到广泛的应用,有极大的市场价值.在整个光通信中,光开关是较为重要的光无源器件,在光网络系统中可对光信号进行选择性操作.随着光通信的日益发展,对光开关的技术要求也日益提高,利用MEMS技术制作的新型光开关具有体积小、重量轻、能耗低、集成化程度高等特点,从而日益成为研究的热点.本文简单介绍了MEMS技术和其主要特点,并较详细地阐述了MEMS技术在光通信中的应用,以及MEMS光开关的结构、发展趋势和目前存在的主要问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号