首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study first reports the initial growth stages of sodium chloride (NaCl) on Ag(1 1 0) at room temperature. NaCl grows in bi-layer mode along its [1 0 0] axis and gives rise to (4 × 1) and (1 × 2) reconstructed domains for coverages lower than two monolayers (ML), a minimal thickness inducing a bi-dimensional closed film. In addition, a 10 ML NaCl film has been examined by low energy electron diffraction (LEED). LEED analysis leads to the dissociation of the NaCl deposit in a few minutes. The NaCl dissociation implies Cl desorption from the surface and Na remaining on it. The residual Na is arranged in the form of a (2 × 1) surface reconstruction and is found to be strongly bounded to the Ag substrate. These findings have been established by using the X-ray photoelectron spectroscopy technique.  相似文献   

2.
We have studied the individual adsorption of Mn and Bi, and their coadsorption on Cu(0 0 1) by low-energy electron diffraction (LEED). For Mn, we have determined the c(2 × 2) structure formed at 300 K, whose structure had been determined by several methods. We reconfirmed by a tensor LEED analysis that it is a substitutional structure and that a previously reported large corrugation (0.30 Å) between substitutional Mn and remaining surface Cu atoms coincides perfectly with the present value. In the individual adsorption of Bi, we have found a c(4 × 2) structure, which is formed by cooling below ∼250 K a surface prepared by Bi deposition of ∼0.25 ML coverage at 300 K where streaky half-order LEED spots appear. The c(4 × 2) structure has been determined by the tensor LEED analysis at 130 K and it is a substitutional structure. In the coadsorption, we found a c(6 × 4) structure, which has been determined by the tensor LEED analysis. It is very similar to the previously determined structure of the c(6 × 4) formed by coadsorption of Mg and Bi, and embedded MnBi4 clusters are arranged in the top Cu layer instead of MgBi4. Large lateral displacements of Bi atoms in the c(6 × 4)-(Mn + Bi) suggest that the Mn atoms undergo the size-enhancement caused by their large magnetic moment.  相似文献   

3.
We have performed total-energy calculations to study theoretical scanning tunneling microscopy (STM) images of the Si(1 1 1)3 × 2 surfaces induced by the adsorption of alkaline-earth metals (AEMs). Previously, in a series of works on Ba/Si(1 1 1) system, we have found that the observed Si(1 1 1)3 × 1-Ba LEED phase indeed has a 3 × 2 periodicity with a Ba coverage of 1/6 ML and the HCC substrate structure. Based on results of the Ba case, we proposed that the HCC structure is also adopted for other AEM atoms, which was confirmed by our recent work. In this paper, we mainly report the STM simulations for different AEM systems to compare with existing experimental data. We discuss the difference in the detailed STM images for different AEM adsorbates. Especially, the difference in filled-state images between Mg and other AEM atoms is attributed to the strong Mg-Si interaction.  相似文献   

4.
M.F. Luo  G.R. Hu 《Surface science》2007,601(6):1461-1466
The surface structures of atomic hydrogen adsorbed on Cu(1 1 1) surface have been studied theoretically by using density-functional-theory calculations. The results show that 0.67 ML hydrogen adsorbed on threefold hollow sites forming (3 × 1) superstructure and 0.5 ML hydrogen adsorbed on threefold hollow sites forming (2 × 2)-2H superstructure with central H at trigonal sites induce most significant substrate reconstructions and that fits best the observed (3 × 3) and (2 × 2) LEED patterns, respectively. The potential energies for the hydrogen in these two models are also lower than those in other competing models. Accordingly, these two models are the most preferable structures for 0.5-0.67 ML and 0.3-0.5 ML hydrogen adsorbed on the Cu(1 1 1) surface. In addition, the calculations also suggest that the lateral H-H interaction is not of simple repulsion and how the adsorbed hydrogen is arrayed is important in modifying the adsorption energy.  相似文献   

5.
Water adsorbed on Ni(1 1 1) forms an ordered, hydrogen bonded ice structure with a (2√7 × 2√7)R19° unit cell. The 2√7 wetting structure forms as islands and persists up to saturation of the first layer. Adsorption of a fraction of a monolayer more water into a second layer destroys the 2√7 registry and creates a disordered ice film. Gas adsorption measurements indicate that the wetting layer is completely covered by a second layer of water before thicker multilayer ice forms. As the second layer is completed the film orders to form an incommensurate crystalline ice film with a hexagonal LEED pattern, oriented to the Ni close packed rows. This ordered, incommensurate structure persists as the ice multilayer grows thicker.  相似文献   

6.
The c(4 × 2) structures in (0 0 1) surfaces of Si and Ge have been studied by low-energy electron diffraction (LEED). Using a proper cleaning method for the Si surface, we were able to observe clear c(4 × 2) LEED patterns up to incident energy of ∼400 eV as well as the Ge surface. Extensive experimental intensity-voltage curves allowed us to optimize the asymmetric dimer model up to the eighth layer (including the dimer layer) in depth in the dynamical LEED calculation. Optimized structural parameters are almost the same for the Si and Ge except for the height of the buckled-up atom of the asymmetric dimer. For the Ge surface, the structural parameters are in excellent agreement with those obtained by a previous theoretical calculation. The tilt angle and bond length of the dimer are 18 ± 1 (19 ± 1)° and 2.4 ± 0.1 (2.5 ± 0.1) Å for the Si(0 0 1) (Ge(0 0 1)), respectively.  相似文献   

7.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

8.
Results for deposition and thermal annealing of gallium on the Si(1 0 0)-(2 × 1) surface achieved by synchrotron radiation photoelectron spectroscopy (SR-PES) and low energy electron diffraction (LEED) are presented. In addition to deposition of Ga on a clean surface, the influence of water adsorption on the arrangement of gallium atoms was also studied. The results on Ga deposition at a higher temperature (490 °C) are consistent with a Ga ad-dimer model showing equivalent bond arrangement of all Ga atoms for coverages up to 0.5 ML. The deposition onto a surface with adsorbed water at room temperature led to a disordered gallium growth. In this case gallium atoms bind to silicon dimers already binding fragments of adsorbed water. A subsequent annealing of these layers leads to a surface structure similar to the Ga-(2 × 2), however, it is less ordered, probably due to the presence of silicon oxides formed from water fragments.  相似文献   

9.
The adsorption of atomic Se on a Fe(1 1 0) surface is examined using the density functional theory (DFT). Selenium is adsorbed in high-symmetry adsorption sites: the -short and long-bridge, and atop sites at 1/2, 1/4, and 1 monolayer (ML) coverages. The long bridge (LB) site is found to be the most stable, followed by the short bridge (SB) and top sites (T). The following overlayer structures were examined, p(2 × 2), c(2 × 2), and p(1 × 1), which correspond to 1/4 ML, 1/2 ML, and 1 ML respectively. Adsorption energy is −5.23 eV at 1/4 ML. Se adsorption results in surface reconstruction, being more extensive for adsorption in the long bridge site at 1/2 ML, with vertical displacements between +8.63 and −6.69% -with regard to the original Fe position-, affecting the 1st and 2nd neighbours. The largest displacement in x or y-directions was determined to be 0.011, 0.030, and 0.021 Å for atop and bridge sites. Comparisons between Se-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the Se. At the long bridge site, the presence of Se causes a decrease in the surface Fe d-orbital density of states between 4 and 5 eV below Fermi level. The density of states present a contribution of Se states at −3.1 eV and −12.9 eV. stabilized after adsorption. The Fe-Fe overlap population decrease and a Fe-Se bond are formed at the expense of the metallic bond.  相似文献   

10.
Ming-Shu Chen 《Surface science》2007,601(22):5162-5169
The adsorption of K atoms on Cu(0 0 1) has been studied by low-energy electron diffraction (LEED) at room temperature (RT) and 130 K. At RT, a (3 × 2)-p2mg LEED pattern with single-domain was observed at coverage of 0.33, whereas the orthogonal two-domain was found at 130 K. At 130 K, a c(4 × 2) pattern with orthogonal two-domain was observed at coverage 0.25. Both the (3 × 2)-p2mg and c(4 × 2) structures have been determined by a tensor LEED analysis. It is demonstrated that K atoms are adsorbed on surface fourfold hollow sites in the c(4 × 2), while in the (3 × 2) structure two K atoms in the unit cell are located at an asymmetric site with a glide-reflection-symmetry. The asymmetric site is at near the midpoint between the exact hollow site and bridge-site but slightly close to the hollow site. A rumpling of 0.07 Å in the first Cu layer was confirmed, which might stabilize K atoms at the asymmetric site. Surface structures appearing in a coverage range 0.25-0.33 are discussed in terms of the occupation of the asymmetric site with increase of coverage.  相似文献   

11.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

12.
Subsequent III-V integration by metal-organic vapor phase epitaxy (MOVPE) or chemical vapor deposition (CVD) necessitates elaborate preparation of Si(1 0 0) substrates in chemical vapor environments characterized by the presence of hydrogen used as process gas and of various precursor molecules. The atomic structure of Si(1 0 0) surfaces prepared in a MOVPE reactor was investigated by low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) available through a dedicated, contamination-free sample transfer to ultra high vacuum (UHV). Since the substrate misorientation has a fundamental impact on the atomic surface structure, we selected a representative set consisting of Si(1 0 0) with 0.1°, 2° and 6° off-cut in [0 1 1] direction for our study. Similar to standard UHV preparation, the LEED and STM results of the CVD-prepared Si(1 0 0) surfaces indicated two-domain (2 × 1)/(1 × 2) reconstructions for lower misorientations implying a predominance of single-layer steps undesirable for subsequent III-V layers. However, double-layer steps developed on 6° misoriented Si(1 0 0) substrates, but STM also showed odd-numbered step heights and LEED confirmed the presence of minority surface reconstruction domains. Strongly depending on misorientation, the STM images revealed complex step structures correlated to the relative dimer orientation on the terraces.  相似文献   

13.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

14.
Scanning tunneling microscopy (STM) has been used to study the various possible structures of adsorbed Bi on the Cu(1 0 0) surface, after equilibration at a temperature of 520 K. All of the structures previously identified by X-ray diffraction (lattice gas, c(2 × 2), c(9√2 × √2)R45°, and p(10 × 10), in order of increasing Bi-coverage) were found to be present on a single sample produced by diffusing Bi onto the Cu(1 0 0) surface from a 3-d source. By investigating the possible coexistence of various pairs of phases, it was demonstrated that the c(2 × 2) phase transforms to the c(9√2 × √2)R45° phase by a first order transition, whereas the transition from c(9√2 × √2)R45° to p(10 × 10) is continuous. In addition, the structure of surface steps was studied as a function of Bi-coverage. The results showed that the presence of Bi changes the nature of the step-step interactions at the Cu(1 0 0) surface from repulsive to attractive. The attractive step-step interactions transform any small deviations from the nominal (1 0 0) orientation of the Cu substrate into (3 1 0) microfacets. When compared with the known equilibrium crystal shape (ECS) of Bi-saturated Cu, the observed microfaceting may imply that the ECS of Cu-Bi alloys is temperature dependent.  相似文献   

15.
Electron transfer processes in the neutralization of Li+ ions on Ag layers grown on Cu(1 1 1) are investigated in quest of quantum confinement effects. Neutralization probabilities in the scattering of Li+ for incident ion energies in the 300 eV to 2 keV range are reported for Ag coverages ranging from 0.15 ML to 5 ML. Results are compared to those for Ag(1 1 1) and Cu(1 1 1) surfaces of bulk crystals. Although existing studies of the characteristics of Ag layers on Cu(1 1 1) indicate significant differences in electronic structure as a function of film thickness, the electron transfer probabilities we measure are found to be very close to those for bulk Ag(1 1 1). These results are commented on the basis of existing models and earlier studies of Li ion neutralization on various metals.  相似文献   

16.
The adsorption and desorption of sulphur on the clean reconstructed Au(1 1 0)-(1 × 2) surface has been studied by low energy electron diffraction, Auger electron spectroscopy and temperature programmed desorption. The results obtained show a complex behaviour of the S/Au(1 1 0) system during sulphur desorption at different temperatures. Two structures of the stable ordered sulphur overlayer on the Au(1 1 0) surface, p(4 × 2) and c(4 × 4), were found after annealing the S/Au(1 1 0) system at 630 K and 463 K, respectively. The corresponding sulphur coverage for these overlayers was estimated by AES signal intensity analysis of the Au NOO and S LMM Auger lines to be equal to 0.13 ML and 0.2 ML, respectively. Both sulphur structures appear after removing an excess of sulphur, which mainly desorbs at 358 K as determined from TPD spectra. Furthermore, it was not possible to produce the lower coverage p(4 × 2) sulphur structure by annealing the c(4 × 4) surface. In the case of the p(4 × 2) S overlayer on the Au(1 1 0)-(1 × 2) surface it is proposed that the sulphur is attached to “missing row” sites only. The c(4 × 4) S overlayer arises via desorption of S2 molecules that are formed on the surface due to mobility of sulphur atoms after a prolonged anneal.  相似文献   

17.
Spin-polarized scanning tunneling microscopy and spectroscopy (SP-STM/STS) has been performed on clean and sulfur-covered three-dimensional Fe islands on W(1 1 0). Upon dosing with H2S the island surface is covered with 1/3 ML S leading to a c(3 × 1) reconstruction. The characteristic magnetic vortex structure is observable before and after dosing, even though the electronic structure of the surface is modified as is shown by SP-STS.  相似文献   

18.
The structure of a nickel oxide film 2 ML thick has been investigated by LEED intensity analysis. The NiO film was prepared by evaporating Ni in presence of O2 at a pressure in the 10−6 mbar range. The growth of the oxide film was followed by XPS, LEIS and LEED. In the early stages of deposition, the film shows a (2 × 1) superstructure in LEED. After deposition of 2 ML of NiO, a sharp (1 × 1) LEED pattern is observed. The intensity versus electron energy curves of the LEED spots were measured for this NiO(1 × 1) film and analysed by means of the tensor LEED method. A good level of agreement of the experimental LEED intensities with those calculated for a pseudomorphic NiO(0 0 1) film was obtained. We found that oxygen atoms at the oxide-substrate interface are on-top silver atoms. The interlayer distance in the oxide does not differ significantly from that in bulk NiO(0 0 1), within the accuracy of the analysis. An outward displacement (0.05 ± 0.05 Å) of oxygen atoms with respect to nickel atoms was found at the oxide film surface. The interlayer distance at the silver-nickel oxide interface is 2.43 ± 0.05 Å.  相似文献   

19.
We present results on the growth and magnetic anisotropies of Co75Fe25 films grown on a Cu(1 1 0) single crystal. Angular dependent MOKE measurements show a thickness dependent, in-plane rotation of the easy axis of magnetisation of up to 60° from the [0 0 1] direction (towards [−1 1 0]). For a film thickness of 5 ML, just greater than that required for the onset of ferromagnetism, uniaxial anisotropy is observed with the easy axis along the [0 0 1] direction. As the film thickness increases this is seen to rotate in-plane towards the [−1 1 0] direction as the contribution from the cubic anisotropy constant grows. At a film thickness of 9 ML there is predominantly cubic anisotropy and at 10 ML the easy axis is rotated to 150° with respect to the [1 −1 0] axis, where it is stabilised.  相似文献   

20.
The vacuum deposition of Pb onto Ag(1 1 1) gives rise to two different surface structures depending on coverage and deposition temperature. At room temperature (RT), low energy electron diffraction (LEED) reveals a sharp reconstruction completed at 1/3 Pb monolayer (ML). Beyond, a close-packed Pb(1 1 1) incommensurate overlayer develops. At low temperature (LT, ∼100 K) the incommensurate structure is directly observed whatever the coverage, corresponding to the growth of close-packed two-dimensional Pb(1 1 1) islands. Synchrotron radiation Pb 5d core-level spectra clearly demonstrate that in each surface structure all Pb atoms have essentially a unique, but different, environment. This reflects the surface alloy formation between the two immiscible metals in the reconstruction and a clear signature of the de-alloying process at RT beyond 1/3 ML coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号