首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I-V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.  相似文献   

2.
The repulsive force originating from steric hindrance of polymers in aqueous solvent was investigated using scanning probe microscopy (SPM). The contact angle (CA) of ammonium poly(acrylic acid) (PAA) solution on the Si surface was measured to estimate the state of the Si substrate. Results of CA measurement show that the Si surface was fully covered with PAA at 0.1 mass% in aqueous solution. The interaction force between the Si tip and the wafer was estimated using the SPM force curve mode. The force curve measured in the ion-exchanged purified water showed the typical relation predicted by Derjaguin-Landau-Verway-Overbeek (DLVO) theory. However, the force curve shape in the 0.1 mass% PAA solution was significantly different. Only a repulsive force was observed at less than about 4 nm of separation distance between the Si wafer and cantilever tip. This distance originated from the steric repulsions of PAA adsorbed onto the Si wafer and cantilever tip.  相似文献   

3.
We have deposited a 12 nm thick Ge layer on Si(1 0 0) held at 200 °C by thermal evaporation under high vacuum conditions. Upon subsequent thermal annealing in vacuum, self-assembled growth of nanostructural Ge islands on the Ge layer occurred. Atomic force microscopy (AFM) and grazing incidence small-angle X-ray scattering (GISAXS) were used to characterize such layers. GISAXS measurements evidenced the formation of cylinder shaped structures upon annealing at 700 °C, which was confirmed by AFM measurements with a very sharp tip. A Ge mass transport from the layer to the islands was inferred by X-ray reflectivity and an activation energy of 0.40 ± 0.10 eV for such a process was calculated.  相似文献   

4.
Thermionic emission from vertically grown carbon nanotubes (CNTs) by water-assisted chemical vapor deposition (WA-CVD) is investigated. I-V characteristics of WA-CNT samples exhibit strong Schottky effect leading to field proportionality factor β ∼ 104 cm−1in contrast to β ∼ 200 cm−1 for the bare tungsten substrate. Non-contact atomic force microscopy imaging of CNT samples show propensity of nanoasperities over a scale of micron size over which the tungsten surface is seen to be atomically smooth. The values of root mean-square roughness for CNTs and W were found to be 24.2 nm and 0.44 nm respectively. The Richardson-Dushman plots yield work function values of ΦCNT ? 4.5 and ΦW ? 4.3 eV. Current versus time data shows that CNT cathodes are fifteen times noisier than tungsten cathode presumably due to increased importance of individual atomic events on the sharp CNT tips of bristle like structures. Power spectral density of current exhibited 1/fξ behavior with ξ ? 1.5, and 2 for W and CNTs. The former suggests surface diffusion whereas the latter indicates adsorption/desorption of atomic/molecular species as a dominant mechanism of noise generation.  相似文献   

5.
We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 × 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.  相似文献   

6.
Thin films in the range 40-80 nm of a blend of PMMA with an azobenzene derivative have been studied directly during UV and blue light irradiation by atomic force microscopy (AFM), revealing highly reversible changes in the surface roughness and the film adhesion. UV light induces an ≈80% increase in surface roughness, whereas illumination by blue light completely reverses these changes. Based on the observed surface topography and transition kinetics a reversible mass flow mechanisms is suggested, where the polarity changes upon switching trigger a wetting-dewetting transition in a surface segregation layer of the chromophore. Similar AFM measurements of the pull-off force indicate a decrease upon UV and an increase after blue light illumination with a complex kinetic behavior: a rapid initial change, attributed to the change in the cis isomer fraction of the azobenzene derivative, and a more gradual change, indicative of slow structural reorganization.  相似文献   

7.
The synthesis of tungsten oxide films with large surface area is promising for gas sensing applications. Thin WOx films were obtained by radio-frequency assisted pulsed laser deposition (RF-PLD). A tungsten target was ablated at 700 and 900 Pa in reactive oxygen, or in a 50% mixed oxygen-helium atmosphere at the same total pressure values. Corning glass was used as substrate, at temperatures including 673, 773 and 873 K. Other deposition parameters such as laser fluence (4.5 J cm−2), laser wavelength (355 nm), radiofrequency power (150 W), target to substrate distance (4 cm), laser spot area (0.7 mm2), and number of laser shots (12,000) were kept fixed. The sensitivity on the deposition conditions of morphology, nanostructure, bond coordination, and roughness of the obtained films were analyzed by scanning and transmission electron microscopy, micro-Raman spectroscopy, and atomic force microscopy.  相似文献   

8.
Scanning Hall probe microscopy (SHPM) is a novel scanned probe magnetic imaging technique whereby the stray fields at the surface of a sample are mapped with a sub-micron semiconductor heterostructure Hall probe. In addition an integrated scanning tunnelling microscope (STM) or atomic force microscope (AFM) tip allows the simultaneous measurement of the sample topography, which can then be correlated with magnetic images. SHPM has several advantages over alternative methods; it is almost completely non-invasive, can be used over a very wide range of temperatures (0.3–300 K) and magnetic fields (0–7 T) and yields quantitative maps of the z-component of magnetic induction. The approach is particularly well suited to low temperature imaging of vortices in type II superconductors with very high signal:noise ratios and relatively high spatial resolution (>100 nm). This paper will introduce the design principles of SHPM including the choice of semiconductor heterostructure for different measurement conditions as well as surface tracking and scanning mechanisms. The full potential of the technique will be illustrated with results of vortex imaging studies of three distinct superconducting systems: (i) vortex chains in the “crossing lattices” regime of highly anisotropic cuprate superconductors, (ii) vortex–antivortex pairs spontaneously nucleated in ferromagnetic-superconductor hybrid structures, and (iii) vortices in the exotic p-wave superconductor Sr2RuO4 at milliKelvin temperatures.  相似文献   

9.
This study presents the surface adhesion between hexagonal boron nitride nanotube (BNNT) and silicon based on lateral manipulation in an atomic force microscope (AFM). The BNNT was mechanically manipulated by the lateral force of an AFM pyramidal silicon probe using the scan mechanism in the imaging mode. With a controlled normal force of the AFM probe and the lateral motion, the lateral force applied to the BNNT could overcome the surface adhesion between BNNT and silicon surface. The individual BNNT is forced to slide and rotate on the silicon surface. Based on the recorded force curve, the calculated shear stress due to surface adhesion is 0.5 GPa. And the specific sliding energy loss is 0.2 J/m2. Comparing BNNTs and carbon nanotube (CNT), the shear stress and specific sliding energy loss of BNNT are an order of magnitude larger than that of CNT. Therefore, the results show that the surface adhesion between BNNT and silicon surface is higher than that of CNT.  相似文献   

10.
Surface chemistry of atmospheric plasma modified polycarbonate substrates   总被引:1,自引:0,他引:1  
Surface of polycarbonate substrates were activated by atmospheric plasma torch using different gas pressure, distance from the substrates, velocity of the torch and number of treatments. The modifications were analyzed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Plasma treatment caused the surface characteristics to become more hydrophilic as measured by the water contact angle, which decreased from 88° to 18°. The decrease in contact angle was mainly due to oxidation of the surface groups, leading to formation of polar groups with hydrophilic property. XPS results showed an increase in the intensity of -(C-O)- groups and also introduction of new functional groups i.e. -(O-CO)- after the treatment process. AFM topographic images demonstrated an increase in the rms roughness of the surface from 2.0 nm to 4.0 nm caused by the treatment. Increase in rms roughness of the surface caused relevant decrease in transmission up to ∼2-5%.  相似文献   

11.
The aim of our experiment was to produce a material with BH bonds for applications in hydrogen storage and generation. By using KrF excimer laser (λ = 248 nm) ablation of borax (Na2B4O7) target, thin films were deposited on KBr and silicon substrates. Ablation was performed both in vacuum and in hydrogen atmosphere. DC glow discharge technique was utilized to enhance hydrogen gas ionization. Experiments were performed using laser fluence from 5 to 20 J/cm2. Films were deposited under gas pressure of 1 × 10−5 to 5 × 10−2 mbar and substrate temperatures of 130-450 °C. Scanning electron microscopy analysis of films showed presence of circular particulates. Film thickness, roughness and particulates number increased with increase in laser fluence. Energy dispersive X-ray spectroscopy analysis shows that sodium content in the particulates is higher than in the target. This effect is discussed in terms of atomic arrangements (both at surface and bulk) in systems where ionic and covalent bonds are present and by looking at the increased surface/bulk ratio of the particulates with respect to the deposited films. The Fourier transform infrared spectroscopy measurements showed presence of BO stretching and BOB bending bonds. Possible reasons for absence of BH bonds are attributed to binding enthalpy of the competing molecules.  相似文献   

12.
This study evaluated the influence of chemical vapor deposition (CVD) tips surface treatments of enamel and dentin on bonding resistance of two adhesive systems. Thirty embedded samples were divided in 12 groups (n = 10), according to factors: substrate (enamel and dentin), adhesive system [etch-and-rinse (SB) and self-etch]; and the surface treatments (paper discs, impact CVD tips and tangential CVD tip). When CVD tip was used in the impact mode the tip was applied perpendicular to dental surface, while at tangential mode, the tip worked parallel to dental surface. Specimens were tested in tension after 24 h at 0.5 mm/min of cross-head speed. ANOVA results, in MPa showed that in enamel, only adhesive system factor was statistically significant (p = 0.015) under tested conditions, with higher bond strength observed for SB groups. However, in dentin the best bonding performance was obtained in SE groups (p = 0.00). In both tested substrates, results did not show statistically significant difference for factors treatment and its interactions.

Conclusions

It may be concluded that CVD-tip surface treatment, in both tested modes, did not influence on adhesion to enamel and dentin. But, it is important to choose adhesive system according to the tissue available to bonding.  相似文献   

13.
A near-field scanning microwave microscope (NSMM) incorporating an atomic force microscope (AFM) probe tip was used for the direct imaging of magnetic domains of a hard disk under an external magnetic field. We directly imaged the magnetic domain changes by measuring the change of reflection coefficient S11 of the NSMM at an operating frequency near 4.4 GHz. Comparison was made to the magnetic force microscope (MFM) image. Using the AFM probe tip coupled to the tuning fork distance control system enabled nano-spatial resolution. The NSMM incorporating an AFM tip offers a reliable means for quantitative measurement of magnetic domains with nano-scale resolution and high sensitivity.  相似文献   

14.
We have studied single Si dangling bonds on the Si(0 0 1) surface using scanning tunnelling microscopy (STM) and density functional theory (DFT) calculations. The Si dangling bonds are created by the chemisorption of single hydrogen atoms forming a Si-Si-H hemihydride. At room temperature, the hemihydride induces static buckling on adjacent Si-Si dimers. In the STM measurements, we observe that the orientation of the static buckling pattern can be reversed with tip-sample bias and influenced by the substrate doping. Our DFT calculations yield a correlation between the electron occupancy of the hemihydride Si dangling bond and the buckling orientation around it.  相似文献   

15.
A simple procedure for the fabrication of submicron-sized functional organic templates is demonstrated. Native silicon samples are partially coated in millimolar octadecyltrichlorosilane (OTS) solutions. After coating, atomic force microscopy (AFM) reveals islands with diameters ranging from 0.6 to 1 μm. The hydrocarbon chains of the self-assembled silane entities within these islands subsequently are chemically functionalized following a robust preparation scheme. X-ray photoelectron spectroscopy (XPS) and water contact angle measurements were used for characterization. After functionalization, alkylsiloxane islands provide a versatile means to direct the deposition of nanoscopic components. In particular, citrate-stabilized gold nanoparticles (d = 16 ± 2 nm) are shown to selectively adsorb onto aminated islands, whereas adsorption on areas between these islands is negligible.  相似文献   

16.
Nickel titanium (NiTi) was dip-coated with titania via the sol-gel route using titanium butoxide (Ti(OC4H9)4) as precursor. The as-coated titania film was crystallized to form anatase by treatment in steam at 105 °C. The crystallized film was relatively thick (about 750 nm) and even. Atomic force microscopy (AFM) revealed that the film was dense with a surface roughness of about 3 nm, and was composed of particles of about 100 nm. X-ray diffractometry (XRD) showed that these particles were composed of nanocrystallites of a few nanometers. Nanoindentation tests of the titania film indicated that the film was tough, possibly due to the nano-size of the crystallites. The mean hardness H and elastic modulus E of the coating were about 1.5 and 70 GPa, respectively. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 17 MPa. Electrochemical impedance spectroscopic (EIS) study and cyclic polarization tests showed that the corrosion resistance of the coated NiTi samples in Hanks’ solution was increased by about two orders of magnitude compared with the substrate. Taken together, the present study showed that steam crystallization is a feasible low-temperature treatment method for sol-gel derived titania coating on NiTi in biomedical applications.  相似文献   

17.
In this work, the quantitative conditions for the lift height for imaging of the magnetic field using magnetic force microscopy (MFM) were optimized. A thin cobalt film deposited on a monocrystalline silicon (1 0 0) substrate with a thickness of 55 nm and a thin nickel film deposited on a glass with a thickness of 600 nm were used as samples. The topography of the surface was acquired by tapping mode atomic force microscopy (AFM), while MFM imaging was performed in the lift mode for various lift heights. It was determined that the sensitivity of the measurements was about 10% higher for images obtained at a scan angle of 90° compared to a scan angle of 0°. Therefore, the three-dimensional surface texture parameters, i.e., average roughness, skewness, kurtosis and the bearing ratio, were determined in dependence on the lift height for a scan angle of 90°. The results of the analyses of the surface parameters showed that the influence of the substrate and its texture on the magnetic force image could be neglected for lift heights above 40 nm and that the upper lift height limit is 100 nm. It was determined that the optimal values of the lift heights were in the range from 60 to 80 nm, depending on the nature of the sample and on the type of the tip used.  相似文献   

18.
Hu Miao 《Applied Surface Science》2009,255(11):5690-5697
This paper reports the germicidal effect (GE) of Escherichia coli on the surface of medical poly(vinyl chloride) (PVC) in remote-oxygen plasma. The concentration of active species in plasma is determined by means of double Langmuir electron probe and electron-spin resonance (ESR) diagnosis. Moreover, surface properties of sterilized PVC are characterized by the water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The distribution of electrons, ions, and radicals in plasma reactor is different. High-purity radicals are obtained at 40 cm from the induction coil which is called remote-plasma zone. By remote-oxygen-plasma sterilization, GE value reach 4.12 under the conditions of treatment time of 60 s, plasma RF power of 100 W and oxygen flux of 60 cm3/min. Compared with direct-oxygen-plasma sterilization, remote plasma can enhance the hydrophilic property and limit the degradation of the PVC surface. After remote-plasma sterilization, PVC surface energy is increased more than twice, which mainly resulted from the increase of surface polar force , and hydrogen bonding force . Moreover, remote-plasma sterilization can increase oxygenated functional groups on PVC surface. Experimental results show that remote plasma can inactivate E. coli on the medical PVC substrate effectively. Furthermore, it can optimize the surface properties.  相似文献   

19.
We demonstrate ultra-high-resolution magnetic force microscopy images of perpendicular magnetic storage media using carbon nanotube probes coated by ferromagnetic Co90Fe10 films (20, 30, 40, and 50 nm). By optimizing ferromagnetic film thickness (effective tip diameter), we obtained best magnetic domain image with an 40 nm-Co90Fe10-coated tip (50 nm tip diameter) about a lateral detect density of 1200 k flux per inch on perpendicular magnetic storage medium, one of the highest resolutions in MFM imaging reported for this material system and structure. The observed dependence of tip dimension on signal contrast and image resolution was successfully explained by a theoretical analysis indicating that the signal contrast, along with the physical probe-tip dimension, should be taken into account to design magnetic probes tips for high-resolution magnetic force microscopy.  相似文献   

20.
Hydrogen permeation measurements of 1.5-10 μm thick Pd/Ag23 wt% membranes before and after thermal treatments at 300 °C in air (both sides) or in the temperature range 300-450 °C in N2 (feed side) and Ar (permeate side) were performed. Accompanying changes in surface topography and chemical composition were subsequently investigated by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) depth profiling. For a 2 μm thick membrane, the surface roughness increased for all annealing temperatures applied, while a temperature of 450 °C was required for an increase in roughness of both membrane surfaces to occur for the 5 μm membrane. The thickest membrane, of 10 μm, showed changed surface roughness on one side of the membrane only and a slight decrease in hydrogen permeance after all heat treatments in N2/Ar. X-ray photoelectron spectroscopy investigations performed after treatment and subsequent permeation measurements revealed segregation of silver to the membrane surfaces for all annealing temperatures applied. In comparison, heat treatment at 300 °C in air resulted in significantly increased hydrogen permeance accompanied by increasing surface roughness. Upon exposure to oxygen, Pd segregates to the surface to form a 2-3 nm thick oxide layer (PdO), with more complex segregation behavior after subsequent reduction and permeance measurements in pure hydrogen. The available permeance data for the Pd/Ag23 wt% membranes after heat treatment in air at 300 °C is found to depend linearly on the inverse membrane thickness, implying bulk limited hydrogen permeation for thicknesses down to 1.5-2.0 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号